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Preface and Welcome Message

Dear LBM symposium participant,

It is a great pleasure to welcome you to the fifth symposium on languages in biology and medicine
(LBM 2013) and introduce these proceedings

LBM is a biennial interdisciplinary forum that brings together researchers in biology, chemistry,
medicine, public health and informatics to discuss and exploit cutting edge language technologies. Lan-
guage, in its many forms, is the universal means to represent, convey, and question knowledge. Al-
though knowledge is still widely communicated through natural languages, biology and medicine also
use a number of other means of communication: sequences, ontologies, chemical and mathematical
formulae, modelling languages, graphs, images, etc. Associated technologies such as text mining and
information extraction, systems modelling, information visualization, semantic technology, and big data
analytics are key for advancing biomedical research and healthcare provision. The automation and in-
tegration of all these solutions will enhance the access to the knowledge stored and conveyed in various
representation, extending the opportunity of new knowledge discovery in the area. As all the individual
technologies are constantly being challenged by user demands and complexities in an interdisciplinary
research environment, the LBM symposium series aims to offer a forum for synergistic interactions
between them.

LBM 2013, held on the 12th-13th December 2013, at the University of Tokyo, Japan, is the follow-
up event of LBM 2011 (NTU, Singapore), LBM 2009 (Jeju Island, South Korea), LBM 2007 (Matrix,
Biopolis, Singapore) and LBM 2005 (KAIST, Daejeon, South Korea).

A syster event, the International Symposium on Semantic Mining in Biomedicine (SMBM), has been
held in 2012 at the Institute of Computational Linguistics, University of Zürich, Switzerland, in 2010 at
EBI, U.K., in 2008 at the University of Turku in Finland, in 2006 at the University of Jena in Germany,
and in 2005 at EBI, UK.

Submissions were invited in the following categories: full research papers, short papers, posters
and highlight presentations. The latter category is an innovation meant to allow presentation of already
published works to a potentially different audience, and thus broaden their impact.

A total of twenty five submissions were received. After a careful review process of each paper by at
least two PC members (in most cases three), only two submissions were retained as full papers (out of
11 submitted in this category), seven were accepted as short papers, and eight were accepted as posters.
Additionally, three submissions were accepted for highlight presentations.

We wish to express our gratitude as organizers and chairs to all the authors for the time and energy
they invested in their research and for their choice of LBM 2013 as the venue to present their work. We
are indebted to all members of the programme committee for their detailed inspection of all submitted
work and their valuable comments. Additional thanks go to keynote and invited speakers for accepting
our invitation and delivering inspiring talks.

Finally, we gratefully acknowledge all the work done by the members of the local organization
committee, who invested a huge amount of time and energy to ensure the smooth running of this event.

Welcome again, and enjoy the symposium!

Fabio Rinaldi and Jin-Dong Kim (Program Chairs)
Jong C. Park, Limsoon Wong, See-Kiong Ng (Steering Committee)
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Program of December 12th, Thursday

08:45 - 09:15 Registration
09:15 - 09:30 Opening Session
09:30 - 10:30 Morning Session I

KEGG molecular networks for linking genomes to society Keynote

Minoru Kanehisa
10:30 - 11:00 Coffee break
11:00 - 12:30 Morning Session II

11:00 Hypothesis Generation in Large-Scale Event Networks
Kai Hakala, Farrokh Mehryary, Suwisa Kaewphan and Filip Ginter

11:30 Distributional Semantics Resources for Biomedical Text Processing
Sampo Pyysalo, Filip Ginter, Hans Moen, Tapio Salakoski and Sophia Ananiadou

11:50 Combining C-value and Keyword Extraction Methods for Biomedical Terms Extraction
Juan Antonio Lossio Ventura, Clement Jonquet, Mathieu Roche and Maguelonne Teisseire

12:10 Open Information Extraction from Biomedical Literature Using Predicate-Argument Structure Patterns
Nhung Nguyen, Makoto Miwa, Yoshimasa Tsuruoka and Satoshi Tojo

12:30 - 14:00 Lunch
14:00 - 15:00 Afternoon session I

It’s all semantics for the user Keynote

Martin Kuiper
15:00 - 15:30 Coffee break
15:30 - 16:50 Afternoon Session II

15:30 Anatomical entity mention recognition at literature scale Highlight

Sampo Pyysalo
16:00 Multilingual Annotation of Named Entities and Terminology Resources Acquisition (MANTRA) Invited

Dietrich Rebholz Schuhmann
16:30 Sharing Reference Texts for Interoperability of Literature Annotation

Jin-Dong Kim
16:50 - 17:00 Lightning Introduction to Posters

TogoStanza: Semantic Web framework for SPARQL-based data visualization in the biological context
Shinobu Okamoto, Shuichi Kawashima, Takatomo Fujisawa and Toshiaki Katayama
Clinical Relation Extraction with Semi-Supervised Learning
Hiroki Ohba and Yutaka Sasaki
A Unique Linear Representation of Carbohydrate Sequences for the Semantic Web
Issaku Yamada and Kiyoko F. Aoki-Kinoshita
An Automatic Extractor for Biomedical Terms in Spanish
Leonardo Campillos-Llanos, José María Guirao-Miras and Antonio Moreno-Sandoval
OntoCloud – interactive visualization of relations between biomedical ontologies
Simon Kocbek and Jin-Dong Kim
A New Approach of Extracting Biomedical Events Based on Double Classification
Xiaomei Wei, Kai Ren and Donghong Ji
On Mention-Level Gene Normalization
Joonyeob Kim, Seung-Cheol Baek, Hee-Jin Lee and Jong C. Park
MPO: Microbial Phenotype Ontology for Comparative Genome Analysis
Shuichi Kawashima, Toshiaki Katayama, Toshihisa Takagi and Shinobu Okamoto

17:00 - 18:00 Poster Session
18:00 - 20:00 Reception
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Program of December 13th, Friday

09:00 - 10:00 Morning Session I
Strategies for structuring free text to enable drug discovery and development Keynote

Phoebe Roberts
10:00 - 10:30 Coffee break
10:30 - 12:00 Morning Session II

10:30 Incorporating Topic Modeling Features For Clinic Concept Assertion Classification
Dingcheng Li, Ning Xia, Sunghwan Sohn, Christopher G. Chute, Hongfang Liu and Kevin Bretonnel Cohen

11:00 Vocabulary Expansion by Semantic Extraction of Medical Terms
Maria Skeppstedt, Magnus Ahltorp and Aron Henriksson

11:20 Impact of real data from electronic health records on the classification of diagnostic terms
Alicia Pérez, Koldo Gojenola, Maite Oronoz and Arantza Casillas

11:40 Comparison between Social Media and Search Activity as Online Human Sensors for Detection of Influenza
Mizuki Morita, Sachiko Maskawa and Eiji Aramaki

12:00 - 13:30 Lunch
13:30 - 14:30 Afternoon Session I

13:30 Anatomography: an open anatomical mapping service for web-based healthcare communication and data
visualization Invited

Kousaku Okubo
14:00 OntoGene results in BioCreative and some thoughts about the nature of shared tasks in biomedical text

mining Highlight

Fabio Rinaldi
14:30 - 15:00 Coffee break
15:00 - 16:00 Afternoon Session II

15:00 Disease Gene Search Engine with Evidence sentences (version cancer) Highlight

Hyunju Lee
15:30 Exploring sublanguages in biology and medicine Invited

Kevin Bretonnel Cohen
16:00 - 16:30 Closing Session (Best Paper Award, SMBM 2014 announcement)
16:30 - 17:00 Free time
17:00 - Excursion and Banquet (Sensoji Temple / Yakatabune Sumidagawa river cruise dinner)
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KEGG molecular networks for linking genomes to society

Minoru Kanehisa
Kyoto University

kanehisa@kuicr.kyoto-u.ac.jp

Abstract

The KEGG database that we have been developing since 1995 contains, among others, accumulated
knowledge on metabolism, other cellular processes, organismal systems, human diseases and drugs rep-
resented as networks of molecular interactions, reactions and relations. The KEGG molecular networks,
including KEGG pathway maps (graphs), BRITE functional hierarchies (ontologies) and KEGG modules
(logical expressions), are widely used as a reference knowledge base for integration and interpretation of
genome sequences and other types of data. In recent years the KEGG molecular networks have been ex-
panded in two ways. One is linking genomes to phenotypes. The KEGG modules are being improved to
automate interpretation of phenotypes, such as metabolic capacity and pathogenicity, from genome and
metagenome sequences. The other is linking genomes to society. The KEGG MEDICUS translational
bioinformatics resource has been developed by integrating drug labels (package inserts) used in society.
The entire set of drug labels in Japan has also been processed to extract drug interactions associated with
contraindications and precautions, as well as pharmaceutical additive and pharmacogenomic biomarkers.
KEGG MEDICUS is directly targeted to society for helping to understand the scientific basis of diseases
and drugs of personal interest.
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Its all semantics for the user

Martin Kuiper
Norwegian University of Science and Technology (NTNU)

martin.kuiper@ntnu.no

Abstract

The Semantic Systems Biology group at the Norwegian University of Science and Technology is active
in the field of biological knowledge management. The group has developed the BioGateway platform:
a tool and resource set designed to provide the intended end-user, ideally a biologist or biomedical
researcher, with assistance in the interpretation of her experimental data. The BioGateway platform
is fueled by a data semantification pipeline that covers a chain of ontology manipulation, knowledge
integration, pre-computing and reasoning, and data visualization. At various points along this pipeline we
are active in making improvements with regard to performance, to keep the process tractable. Recently
we published the orthAgogue software, boosting the speed of orthology prediction 200 fold. Even more
recently, we ventured into a new approach to increase the speed of reasoning in order to eliminate a
significant bottleneck in the generation of relational closures.

End users should, however, not be concerned with the details of this process, for all they care the
technology can remain under the hood. What they do care about is an intuitive use of semantic resources
and it is there that current interfaces for the design of SPARQL queries or inspection of the results leave
a lot to be desired. Although for a query interface we have no improvements in preparation, for the
visualization of ontologies we have produced the OLS Vis software, an intuitive and flexible viewer that
is able to display complex ontologies.

The group is actively collaborating with end users, which resulted in the construction of a resource
for gene expression regulation analysis: the GeXKB resource. Some examples of the use of GeXKB
for regulatory pathway extension will be provided. The construction of GeXKB prompted us in the
direction of semantifying data from the source: the curation of Transcription Factor information from
scientific literature, resulting in the TFcheckpoint database (www.tfcheckpoint.org) and a set of curation
guidelines for other volunteer curators to join in this effort.

We are now engaged in efforts to organize the global community interested in the domain of transcrip-
tion regulation research to develop similar rigorous guidelines and apply them to develop an integrated
homogeneous knowledge resource that could be used for instance in the field of gene regulatory network
building and analysis. In order to further enable this work we are now configuring and using our liter-
ature curation environment SciCura (scicura.org, beta version) to facilitate the linking of proteins and
genes, and their experimentally validated function with Uniprot / Entrez identifiers, and GO / PSI-MI /
Brenda Tissue Ontology terms, respectively. We collect detailed information on gene regulatory events
in the form of human-readable statements which are fully supported by proper database identifiers and
ontology terms (an approach that is in fact extensible to create digital abstracts). These data will become
publicly available and also form a crucial component of the GeXKB knowledge base.

References
Ekseth OK, Kuiper M and Mironov V. Orthagogue. 2013. an agile tool for the rapid prediction of orthology

relations. Bioinformatics, Oxford Press, [Epub ahead of print].
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Tripathi S, Christie KR, Balakrishnan R, Huntley R, Hill DP, Thommesen L, Blake JA, Kuiper M and Lgreid A.
2013. Gene Ontology annotation of sequence-specific DNA binding transcription factors: setting the stage for
a large-scale curation effort. Database, Oxford Press, doi: 10.1093/database/bat062.

Chawla K, Tripathi S, Thommesen L, Lgreid A, and Kuiper M. TFcheckpoint. 2013. a curated compendium of
specific DNA-binding RNA polymerase II transcription factors. Bioinformatics, Oxford Press, 29(19):2519-20.

Antezana E, Mironov V and Kuiper M. 2013. The emergence of Semantic Systems Biology. New biotechnology,
Elsevier, 30(3):286-90.

A Venkatesan, V Mironov, M Kuiper. 2012. Towards an integrated knowledge system for capturing gene expres-
sion events. Proceedings of ICBO 2012, Graz, Austria, July 21-25.

Vercruysse S, Venkatesan A and Kuiper M. OLSVis. 2012. an Animated, Interactive Visual Browser for Bio-
ontologies. BMC Bioinformatics, BioMed Central, 13:116.

Vercruysse S and Kuiper M. Jointly. 2012. creating digital abstracts: dealing with synonymy and polysemy. BMC
research notes, BioMed Central, 5(1):601.
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Strategies for structuring free text
to enable drug discovery and development

Phoebe Roberts
Pfizer

Phoebe.Roberts@pfizer.com

Abstract

Therapeutic research creates scenarios that differ from academic research due to the constraints of linking
targets, drugs and diseases for the sole purpose of treating patients. Pharmaceutical industry scientists
routinely triage new drug target candidates, therapeutic modalities, and new indications for existing
drugs. To do so effectively requires tapping into all available prior knowledge, be it public, subscription
based, or internal to a specific organization. Prior knowledge represents the spectrum of findings derived
from journal articles, patents or internal reports. The original free text represents one end of the spectrum
from which entities and events are automatically extracted or manually curated. These derived statements
increase in value when they are normalized to unique identifiers and codified in a machine-readable
language. Accurate translation of free text into normalized, machine-readable complex statements is
expensive, and we employ numerous strategies to meet the needs of biologists, chemists and clinicians
looking for therapeutic opportunities. Investments range from licensing curated content and funding
curation to hosting text mining systems, thereby ensuring comprehensive coverage and rapid turnaround.
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Multilingual Annotation of Named Entities
and Terminology Resources Acquisition (MANTRA)

Dietrich Rebholz-Schuhmann
University of Zürich

rebholz@ebi.ac.uk

Abstract

Mantra will provide multilingual terminologies and semantically annotated multilingual documents, e.g.,
patent texts, to improve the accessibility of scientific information from multilingual documents. The
MANTRA project capitalizes on parallel document corpora from which translational correspondences
will be computed by the use of different alignment methods. Fortunately, the biomedical domain, the
application scenario of MANTRA, offers a rich variety of such parallel corpora.

The project partners will exploit these multilingual document sets to harvest terms and concept repre-
sentations in different languages in order to augment currently available terminological resources such
as the Medical Subject Headings (MeSH). The project partners will collaboratively build two types of
resources:

• automatically enhanced multilingual terminologies and

• semantically annotated multilingual documents.

The novelty of the latter resource derives from the fact that we solicit and orchestrate community
efforts for building up these annotated resources, a procedure that has already been proven successful
for the semantic enrichment of large-scale biomedical document corpora (CALBC project) which was
executed by the project partners.

The novelty of the first comes from a new combination of existing technologies in the area of statistical
machine translation, named entity tagging and terminological resources. Both types of resources will be
made available to the public for translation purposes and for search in and text mining from multilingual
documents.

Source

Homepage of MANTRA project: http://www.mantra-project.eu/
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Anatomography: an open anatomical mapping service
for web-based healthcare communication and data visualization

Kousaku Okubo
National Institute of Genetics (NIG)
kokubo@genes.nig.ac.jp

Abstract

We report the world’s first web-based anatomical mapping service for the public; it allows experts and
non-experts to create and exchange three dimensional (3D) custom maps that offers common coordinate
system through any web media. It consists of three elements: 1) map building kit: anatomically seg-
mented parts of a digital 3D digital manikin, 2) map editor: a web-application that navigates the user
to create custom map URL, 3) anatomical map API: a programming interface exposed to the web, on
the image rendering server loaded with the kit data. The custom map URL, alone or inserted in source
file of a web page, is visualized on the users browser as custom map image via map API. In addition,
map API provides unique utilities such as anatomical address coding, collaborative mapping, anatomical
choropleth maps that make the healthcare information more “actionable”.
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Exploring sublanguages in biology and medicine

Kevin Bretonnel Cohen
University of Colorado

kevin.cohen@gmail.com

Abstract

Sublanguages, or language in specialized domains and genres, are important to the understanding of
biomedical languages and to the development of biomedical natural language processing systems. They
also add to our understanding of language in general, and hence are important to corpus linguistics. In
this talk, I present data from recent work on recognizing and characterizing biomedical sublanguages.
It will be seen that current technologies are adequate for recognizing sublanguages in the biomedical
domain: in scientific journal articles, in clinical documents, and in patents, as well as in languages with
very different morphosyntactic characteristics from English. A toolkit for recognizing sublanguages is
presented, and future directions in the characterization of sublanguages are discussed.

11
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Highlight talk: Anatomical entity mention recognition at literature scale

Sampo Pyysalo and Sophia Ananiadou
National Centre for Text Mining and School of Computer Science, University of Manchester, UK

Anatomical entities are centrally important to
biomedical discourse, and the ability to recog-
nize mentions of these entities in free text is con-
sequently required for comprehensive analysis of
domain texts. Although there has been substantial
progress over the last 15 years in the automatic
recognition of mentions of various types of enti-
ties, relations, and events in biomedical scientific
text, only limited effort has focused specifically on
mentions of anatomical entities.

In this (proposed) highlight talk, we present our
recent work “Anatomical entity mention recogni-
tion at literature scale” (Pyysalo and Ananiadou,
2013). The central contributions of this work are
the following:

AnatEM corpus The extended Anatomical En-
tity Mention (AnatEM) corpus is a manually an-
notated corpus of 1212 PubMed abstracts and
PMC Open Access subset full-text extracts (ap-
prox. 250,000 words). The corpus annota-
tion extends substantially on previously available
resources (Ohta et al., 2012), identifying over
13,000 mentions of anatomical entities and assign-
ing each to one of 12 granularity-based types such
as CELLULAR COMPONENT, TISSUE, and OR-
GAN (Figure 1). The corpus is made available un-
der the open Creative Commons BY-SA license.

AnatomyTagger We evaluated numerous
strategies to improve the performance of ma-
chine learning-based anatomical entity mention
recognition, including dictionary resources based
on UMLS and OBO Foundry ontologies, statis-
tical truecasing, and incorporation of non-local
features through multi-stage tagging. The most
effective strategies were then implemented in
AnatomyTagger, a standalone tagger using the
NERsuite toolkit,1 which is in turn built on the
CRFsuite (Okazaki, 2007) implementation of
conditional random fields.

1http://nersuite.nlplab.org/

Figure 1: Annotation example

Evaluation on the AnatEM corpus showed that
the AnatomyTagger outperforms both dictionary-
based approaches as well as several recently pro-
posed machine learning-based taggers, achieving
an F-score of 92% for mention detection and 85%
for detection and classification. The tagger is re-
leased under the open source MIT license.

Literature-scale application We applied an im-
plementation of the AnatomyTagger pipeline in
the UIMA system to automatically tag all 600,000
PMC Open Access full-text documents, resulting
in the recognition of over 48 million anatomi-
cal entity mentions. The resulting dataset, repre-
senting the first application of a machine-learning
based anatomical entity recognition system to the
entire Open Access biomedical literature, opens
several new opportunities for detailed analysis of
the scientific literature. This dataset is made avail-
able under the open Creative Commons BY-SA li-
cense.

Availability All introduced tools
and resources are available from
http://nactem.ac.uk/anatomytagger/

References
T. Ohta, S. Pyysalo, J. Tsujii, and S. Ananiadou. 2012.

Open-domain anatomical entity mention detection.
In Proceedings of DSSD 2012.

Naoaki Okazaki. 2007. CRFsuite: a fast implementa-
tion of conditional random fields (CRFs).

Sampo Pyysalo and Sophia Ananiadou. 2013.
Anatomical entity mention recognition at literature
scale. Bioinformatics. (in press).
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OntoGene results in BioCreative and some thoughts about the nature of
shared tasks in biomedical text mining

Fabio Rinaldi
University of Zürich

fabio.rinaldi@uzh.ch

Abstract

Since 2003 the BioCreative challenge has addressed various aspects of text mining that could be relevant
for the curation of biological databases, such as Gene Ontology annotations, detection of gene mentions,
database normalization of gene mentions, protein-protein interactions, up to experimental interactive
curation. In a parallel development, the BioNLP shared task has addressed the problem of finding bio-
molecular events which appear in the biomedical literature, provided some evidence for the entities
involved in the event. Although these problems might appear as distinct, they are related by the fact that
in a complex real-world curation pipeline they would need to be combined in order to provide a complete
text mining solution in support of detailed curation needs.

Starting in BioCreative 2012, and again in BioCreative 2013, the Comparative Toxicogenomics
Database (CTD) has organized a task specifically designed to support their daily curation process, pro-
viding its own curated data as training and test sets. I will present the method and results used by the
OntoGene team [1] for their participation in the CTD task [2], and use it as an example in order to dis-
cuss the different nature of the two main competitive evaluations in the biomedical text mining domain
(BioCreative and BioNLP), as well as the different way in which training/test data is obtained, which I
think is a crucial point for the relevance of the results.

[1] http://www.ontogene.org/

[2] http://database.oxfordjournals.org/content/2013/bas053.full
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Abstract

Biological events such as gene expression, regulation, phosphorylation, localization and protein
catabolism play important roles in the development of diseases. Understanding the association between
diseases and genes can be enhanced with the identification of involved biological events in this associa-
tion. Our novel search engine, DigSee, services the sentences with those identified triple relations, on the
requests from users, which require information such that which genes are involved in the development
of which disease through which biological events.

In DigSee, the candidate evidence sentences are ranked based on a Bayesian classifier to measure the
relevance of the sentences, which means whether the recognized gene is the subject of the identified event
that leads to changes of the given diseases properties. The classifier uses 10 linguistically motivated fea-
tures, including features obtained from dependency parse trees, and handcrafted cancer-related terms,
and terms related to negative sentences. The model is trained and tested on a gold-standard data set man-
ually constructed by the authors. In the current version of DigSee, 1 391 019 evidence sentences from
cancer-related MEDLINE abstracts were collected, and DigSee supports all cancer types ( 200 cancer
names) and the following event types as the molecular context of genedisease association: gene expres-
sion, transcription, phosphorylation, localization, regulation, binding and protein catabolism. DigSee is
available through http://gcancer.org/digsee.
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Abstract

Hypothesis generation from literature is
among the most prominent goals of the
BioNLP research community. The exis-
tence of EVEX, a large-scale event net-
work mined from the entire available
biomedical literature, opens the possibility
to cast this task in a supervised machine
learning setting, defining it as the predic-
tion of edges in this network, based on fea-
tures from their network context.

In this paper, we study the task from two
perspectives. First, we build a machine
learning system which predicts novel pair-
wise relationships in the EVEX network
and evaluate its performance using both
the standard measures as well as through
a manual inspection on a subset of the out-
put. And second, we analyze and discuss
the issues in evaluation arising from cross-
validation in densely connected graphs
with uneven edge distribution.

We find that the task is learnable, achiev-
ing performance clearly above baseline.
Further, a manual inspection of predic-
tions not found in the EVEX network
showed several candidate pairs, whose in-
teraction could be verified in the literature.
These pairs hint at the possibility that true
novel interacting pairs were identified by
the system as well, even though further
work is necessary to confirm whether that
is indeed the case.

1 Introduction

Hypothesis generation based on literature min-
ing is among the most prominent goals of the
BioNLP research community. Already over 20
years ago, the legendary ARROWSMITH system

(Swanson, 1988) identified novel association can-
didates by combining the information from en-
tity pairs frequently co-occuring in the literature
(Bekhuis, 2006). The work of Swanson, and many
others, was based on the statistics of term co-
occurrence in text. To increase the recall of low-
frequency associations, subsequent work has fo-
cused on a more detailed extraction of pairwise
interactions of (mainly) genes and proteins from
individual sentences (Pyysalo et al., 2008; Tikk
et al., 2010). Such extraction of interacting pairs
has the advantage that even single assertions can
be extracted, without the need for sufficiently high
co-occurrence. These methods are, however, of-
ten largely restricted to the extraction of untyped,
undirected pairs, i.e. an association is postulated,
but no additional knowledge regarding its type is
given. Finally, methods for the extraction of de-
tailed events have been introduced, mainly as the
outcome of the BioNLP Shared Tasks on Event
Extraction (Kim et al., 2009; Kim et al., 2011;
Nédellec et al., 2013). The events are detailed,
recursive structures that provide a more faithful
representation of the semantics of the underlying
text. Event extraction systems have subsequently
been applied on a large scale to the collection of
PubMed abstracts and the open-access section of
PubMed Central full-text articles (Björne et al.,
2010; Gerner et al., 2012). EVEX (Van Lan-
deghem et al., 2013), presently the only publicly
available large-scale event collection, serves as the
basis of this study and is discussed in more detail
in Section 2.

The availability of EVEX as a large-scale net-
work, with genes and gene products (GGPs) as the
nodes and their relationships as the edges, allows
us to study the problem of hypothesis generation
at a large scale and in a machine learning setting.
Rather than relying on a set of pre-defined pat-
terns, such as the triangular pattern used by Swan-
son which postulated the hypothetical association
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A–C given the identified associations A–X and X–
C, we define a number of features extracted from
the network context and train a supervised classi-
fier. This allows us to incorporate more informa-
tion into the classification process.

Given a candidate pair of nodes not already con-
nected by an edge in the network, the task is to
predict the existence of a potential edge, or edges,
between the two nodes and possibly also the na-
ture (type) of the predicted relationship. Features
for this prediction task are extracted from the ex-
isting network neighborhood of the candidate pair,
in particular from short paths in the network that
connect the two nodes. Edges already existing in
the network are then used as positive examples in
training. In this paper, we will explore both the
simpler task of predicting whether an edge exists
or not, as well as the more complex multi-label
task of predicting also the type of the newly pre-
dicted edges.

2 Data

The data we use is extracted from EVEX, a large-
scale literature mining resource built on top of the
set of events extracted from all PubMed abstracts
and PubMed Central Open Access full-text arti-
cles, using the TEES system (Van Landeghem et
al., 2013; Björne et al., 2012). A feature of EVEX
particularly important for this current study is that
it provides a network view, where GGPs are nor-
malized to their respective Entrez Gene identifiers
using the GenNorm system (Wei et al., 2012), and
the complex recursive events are reduced into pair-
wise relationships with the coarse-grained types of
Regulation, Binding, and Indirect regulation and
29 fine-grained types such as Regulation of phos-
phorylation and Indirect catalysis of hydroxyla-
tion. This network view thus abstracts away some
of the complexity of the recursive events and al-
lows modeling the problem as a simple edge pre-
diction in directed graphs. Figure 1 illustrates a
tiny part of the human gene regulatory network ex-
tracted from the EVEX resource.

In the EVEX network view, the individual event
occurrences extracted from text are aggregated,
i.e. a single edge in the network stands for all indi-
vidual events that represent this relationship any-
where in the literature. This is possible because
the GGP symbols are normalized into Entrez Gene
identifiers and all edges of the same type and di-
rection between the same Entrez Gene identifier

CXCL1

MAP2K1

IL8

WDR83

RPS6KA5

STAT1

FADD

SRC

PPYR1

MAP2K3

MAPK3

MAP3K1

TLR5

CASP10 PTK2

MAPK8

Figure 1: A tiny part of the highly con-
nected network extracted from EVEX for human
gene/protein interactions. Circle-terminated con-
nections indicate binding and arrows indicate reg-
ulation. Indirect regulations are presented with
dashed lines while direct regulations are presented
with solid ones.

pair can be merged. This has the major advantage
of allowing the use of features from all the avail-
able literature when predicting new relationships,
not restricting ourselves to a single sentence, or a
single article.

The complete EVEX network consists of
819,348 unique edges among 48,061 unique GGPs
from a large number of different organisms. To
deal with a smaller, yet biologically motivated
problem for this initial study, we selected the sub-
network formed by all human genes (judged by
their Entrez Gene identifier) and only consider
the three coarse-grained types, rather than the 29
fine-grained types available in EVEX. This hu-
man gene network consists of 13,418 nodes and
265,738 directed edges. As illustrated in Table 1,
the network is densely connected, with 97.6% of
nodes belonging to a single large connected com-
ponent. To simplify processing, we remove the
317 nodes that belong to connected components
with less than 8 nodes, and the 76 edges among
these nodes. The 212 connected components with
only a single node reflect the self-interacting genes
with no known interactions with other genes in the
EVEX database.
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# nodes # components
1 212
2 38
3 6
4 2
6 1
7 1

13,091 1

Table 1: The distribution of connected compo-
nents in the network, showing that essentially the
entire network is spanned by a single connected
component with 13,091 nodes.

3 Methods

Casting the task in a straightforward supervised
machine learning setting, we need to specify what
our positives and negatives are. A positive ex-
ample is a pair of nodes in the network which is
connected with an edge. In the classification, we
will use features extracted from paths two or three
edges long that connect the two nodes in the net-
work.

As with many similar problems, there is no apri-
ori given set of negative examples. Instead, any
pair of nodes that is not directly connected in the
network can be technically considered as a nega-
tive example. This would, however, have two un-
wanted consequences: First, the number of such
negative examples would be enormous in com-
parison to the number of positive examples, and
second, most arbitrary node pairs are distant in
the network and obviously unrelated. The clas-
sification problem would thus become trivial if
trained and evaluated on such negative examples,
and its performance would not be very informa-
tive. Rather, we thus restrict the selection of neg-
ative examples to the “interesting” node pairs that
are not connected by a direct edge in the graph, but
are connected by at least one path of at most three
edges. In this way, we focus on the more realistic
problem of predicting novel relationships for node
pairs that are closely connected in the network.

Current state-of-the-art event extraction sys-
tems perform in the range of 40–50% in terms of
recall. Due to this fairly low retrieval rate some of
the examples labeled as negatives in training are in
fact false negatives in the underlying EVEX net-
work, and are bound to add noise to the training
and evaluation data. To diminish their effect, we
further refine the data by excluding negative gene

pairs that co-occur in at least one sentence. Since,
as was shown for example in the Genia Shared
Task data, statements of interactions rarely cross
the sentence boundary, this filtering step will re-
move most of the EVEX false negatives. The final
set of negatives used in training and evaluation is
thus constituted by pairs that are connected in the
network by at least one path of length at most three
edges, and that have not co-occurred in a sentence.

Comparing the average number of paths in the
network that connect candidates in the final set
of positives (32,077), the final set of negatives
(427), and the (currently discarded) set of nega-
tives where the candidate GGPs co-occur in a sen-
tence (8,602), reveals large differences, in particu-
lar further confirming that the currently discarded
negatives probably contain a non-trivial propor-
tion of actual existing interactions that the EVEX
text mining system failed to extract. Even though
these examples are excluded in the current eval-
uation so as to avoid the added noise in the data,
future work should focus on assessing their impor-
tance in hypothesis generation as well as in im-
proving the recall of the EVEX resource.

4 Features and Classification

To solve the binary classification problem of pre-
dicting the existence of an edge, we train a lin-
ear support vector machine using the SVM-light
library (Joachims, 1999). The features used are
based on the paths between the nodes, limiting to
only the paths of length two and three. Two feature
types are used:

1. For every unique path type, defined as the
concatenation of edge types and directions
along the path, the number of paths of this
type connecting the pair of GGPs is given.

2. For every unique path type of length two
edges, the maximum of EVEX confidence
scores of the edges in the path. The confi-
dence scores given in EVEX for the individ-
ual edges reflect the reliability of the underly-
ing events being correctly extracted from the
text.

The first set of features is purely based on the
structure of the graph and could be used with
various graphs constructed from different data
sources. The second set, however, is unique to the
underlying text mining resource, providing infor-
mation that cannot be acquired from other type of
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gene regulatory networks. The performance gain
of these feature types is discussed in Section 5.3.
It is worth noting that neither of these feature types
encode information about the intermediary nodes
in the paths nor the textual context where the in-
teractions have been seen. As will be discussed in
detail in Section 5.2, this is particularly important
in the cross-validation setting, where it is difficult
to avoid paths crossing between training and test-
ing sets without substantially changing the charac-
teristics of the data.

The optimization of the classifier C parameter
was done with a grid search against a develop-
ment set. As the natural distribution of positive
and negative examples is very tilted, we oversam-
ple positive examples to create training data with
a 1:10 proportion between positive and negative
examples. No such oversampling is done for the
development and test sets, naturally.

The more complex problem definition, where
event types are also predicted, can be formalized
as a multi-label classification task. In this case
we use a one-vs-all classification approach imple-
mented with the scikit-learn library (Pedregosa et
al., 2011) and a linear support vector machine.
The same features are used in both tasks.

5 Results

5.1 Baseline

Even though we select the negatives to be con-
nected with a path of at most three edges, there
is still a clear difference in the density — i.e. the
number of paths in the network that connect the
the two nodes — between the positive and the
negative examples. The positive examples have
on average a notably higher number of connect-
ing paths. The distributions of the path counts are
illustrated in detail in Figure 2. The histograms
show that the distribution of the negative examples
resembles an exponential distribution whereas the
positive examples show a heavy-tailed distribu-
tion. This is naturally a difference which a clas-
sifier can learn to exploit. To test how predictive
the path count is of the classification outcome, we
train a baseline classifier which is only given the
total number of connecting paths.

5.2 Test Protocol

All experiments are carried out using the 10-fold
cross-validation protocol, whereby the network is
split into ten sub-networks, of which eight are used

for training, one for parameter optimization, and
one for testing. 20,000 pairs with at least one
connecting path of at most three edges are ran-
domly sampled from each partition to form test
sets with a natural distribution of positive and neg-
ative examples. The results on the ten sets are
then averaged. Unlike in most machine learning
problems where individual instances are largely
independent, the densely connected event network
complicates the 10-fold split substantially. The
obvious approach of splitting the nodes randomly
is not practical because for any given node, 90%
of its neighbors will be assigned to a different set
than the node itself, while for feature generation
and testing it would be desirable for the node as
well as its neighbors to be assigned to the same set.
Rather than splitting the nodes into sets randomly,
we apply the METIS toolchain for graph partition-
ing (Lasalle and Karypis, 2013), which heuristi-
cally splits the network into roughly equally-sized
parts while minimizing the number of edges cross-
ing among the parts.

An issue with splitting the graph into partitions
roughly equally-sized with respect to the num-
ber of nodes is that a small number of extremely
densely connected hub nodes causes large varia-
tions in edge density in the resulting sets and, as
will be shown later, subsequent variation in the re-
sults. The METIS algorithm allows for weights
to be given to the nodes, which affects the divi-
sion to create graph partitions with roughly equal
sum of node weights. Weighting the nodes by
their degree, we can thus subdivide the graph into
partitions with a roughly equal number of edges,
thus balancing the edge density rather than node
density. To illustrate the difference, in Table 2
we show the number of nodes and edges in two
METIS-based 10-fold splits corresponding to the
two aforementioned strategies. Note the partic-
ularly disturbing fold no. 1 in the unweighted
strategy, which has an order of magnitude more
edges than any of the other nine folds. This par-
tition includes several well-studied genes such as
TNF-alpha, IL-6 and insulin, all with hundreds of
known interaction partners in the EVEX resource.

Another problem stems from the fact that, re-
gardless of the strategy used to divide the nodes
into subsets, there will be a number of edges span-
ning across these subsets. Of particular concern
are edges spanning between the training and the
test set in a given fold of the 10-fold protocol.
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Figure 2: Distributions of positive and negative examples in terms of the connecting path counts. The
y-axis has been limited to 15% and the actual heights of the bins exceeding this limit are denoted in the
figure.

Unweighted Weighted
Fold Nodes Edges Nodes Edges

0 1,335 3,713 904 7,664
1 1,348 79,005 1,287 9,678
2 1,320 4,263 1,892 7,677
3 1,348 9,959 1,369 8,326
4 1,302 3,198 1,256 11,616
5 1,278 1,738 1,140 8,668
6 1,289 2,129 921 8,533
7 1,296 2,273 1,792 8,333
8 1,283 3,116 1,180 6,786
9 1,292 2,221 1,350 8,421

Total 13,091 111,615 13,091 85,702

Table 2: The distribution in terms of the num-
ber of nodes and edges when splitting the net-
work into 10 folds with roughly equal node
count (unweighted) and roughly equal edge count
(weighted) using the METIS algorithm.

While the obvious “safe” course of action would
be to remove all edges that connect nodes between
the training and test data, this has a notable im-
pact on the data exactly because it is so densely
interconnected. This is again illustrated in Table
2, which shows the edge counts for the 10 par-
titions when edges spanning across partitions are
removed. In the unweighted set, 58% of edges
are removed, and in the weighted set, full 68%
of edges are removed. Removing edges spanning
across the 10 folds thus clearly substantially af-
fects the properties of the underlying data. Note
that while only removing edges spanning between
the training and test set in every iteration of the

10 fold evaluation strategy is also an option, this
would result in substantially skewed distributions
between the training and test data, and we thus do
not consider this approach further.

To assess the impact of these choices, we carry
out evaluation on all four combinations, i.e. split-
ting to balance the number of nodes versus number
of edges, and preserving or removing the edges
spanning between the folds in the 10-fold proto-
col. The four resulting divisions and their salient
characteristics are summarized in Table 3.

5.3 Classification Results

In the evaluation, we compare classifiers with
three different feature sets on the four network
partitioning strategies introduced in Section 5.2.
The baseline classifier uses only one feature which
encodes the total number of paths connecting the
candidate pair. A second classifier utilizes counts
of unique path structures, and a third classifier in-
troduces also features encoding confidences of the
individual edges, as extracted from EVEX. Preci-
sion, recall, and F-score averaged over the 10 folds
for the three classifiers are shown in Table 4.

Several observations can be made: To begin
with, the performance of the baseline classifier is
very poor in evaluation strategies with equal node
count partitioning, achieving F-scores of 7.36%
and 3.65%. This is most visible when edges span-
ning across partitions are retained in the data,
where the baseline classifier obtains an F-score of
0.0 in four folds out of ten. This is likely because
the baseline classifier can only rely on the num-
ber of paths, which substantially differs among
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Dataset
name

Positives
Frequency
(%)

Negatives
Frequency
(%)

Average
paths
count
(Total)

Average
paths
count
(Positives)

Average
paths
count
(Negatives)

Sample
STD
(Total)

Sample
STD
(Positives)

Sample
STD
(Negatives)

unweighted/remove 3.86 96.14 1289.00 12590.00 446.20 10325.95 42184.00 3267.35
weighted/remove 1.72 98.28 195.40 3086.00 104.40 929.10 5134.79 331.40
unweighted/keep 3.86 96.14 1543.00 16480.00 943.10 11358.70 52216.45 3915.70
weighted/keep 1.72 98.28 1094.00 25050.00 673.60 7932.11 52306.50 2403.92

Table 3: The salient characteristics of the four ways to construct the 10-fold split of the data.

Classifier Precision Recall F-score
unweighted/remove

B 3.98 79.88 7.36
S 50.81 31.69 31.94
C 82.99 49.79 54.30

weighted/remove
B 54.96 34.22 34.14
S 60.84 46.44 49.81
C 62.69 52.88 56.47

unweighted/keep
B 1.89 60.00 3.65
S 58.08 38.05 41.61
C 78.64 28.92 41.20

weighted/keep
B 59.31 29.43 33.50
S 67.72 46.26 53.76
C 60.93 49.98 53.33

Table 4: Averaged precision, recall and F-score
over all test partitions for each evaluation strat-
egy. B = baseline classifier, S = classifier with
path structure features, C = classifier with confi-
dence and structure features.

the 10 folds with equal node count partitioning
(see Table 2). Especially with the dense fold no.
1, the network density and therefore path count
differs substantially between the training and test
set, leading to the poor classification performance.
With partitions balanced by edge counts, on the
other hand, the baseline classifier performance is
much higher, with F-scores of over 30%.

Classifiers using structure and confidence fea-
tures clearly outperform the baseline in all eval-
uation strategies, indicating that this problem in-
deed is learnable and that the paths themselves,
not only their overall count, provide useful infor-
mation to the classification. Interestingly, the con-
fidence features decrease the performance in eval-
uation strategies where paths are allowed to span
across folds. As these features provide clear im-
provement when the folds are completely indepen-

dent, further work is required to examine whether
it is the case that confidence features are benefi-
cial only with sparser networks, leading to poten-
tial gains in networks for less studied organisms.

For the more complex task of predicting also the
edge type and direction we select only one evalu-
ation strategy: balanced edge counts with edges
spanning over folds. This method is chosen as it
provides a sensible baseline and low variation be-
tween the folds, yet it reflects the natural density
of the graph well. As the edge types are not ex-
clusive, multiple labels can be predicted for each
example, reflecting cases where several relation-
ships exist simultaneously between the candidate
GGPs, for example both Binding and Regulation.

Results for the multi-label classification task are
shown in Table 5. As can be expected, the perfor-
mance for this task is lower than for the simple
binary classification task. As with the binary task,
the performance of the classifiers is substantially
higher than for the baseline. An interesting differ-
ence can be observed between the performance of
predicting binding versus regulation. As binding
edges are symmetric and the most common out of
these types, predicting them should be intuitively
the easiest. However, the baseline classifier ob-
tains higher scores for regulation events. On the
other hand, the classifier with path structure fea-
tures performs clearly better for binding edges, re-
sulting in approximately 10pp higher F-score than
for regulation edges.

Indirect regulations are clearly the hardest types
to predict. This might be due to their low number
in the data sets or the fact that an indirect regula-
tion edge always originates from a complex regu-
lation event. The confidence features do not seem
to have a significant influence on the results as also
observed in the binary classification task. Further
investigation is needed to clarify these evaluation
numbers.
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Edge type Precision Recall F-score
B

Binding 63.07 9.27 14.84
Reg. > 66.01 11.36 17.74
Reg. < 61.37 14.35 21.38

Ind. reg. > 36.00 5.46 9.18
Ind. reg. < 31.83 5.76 9.56

Micro-average 60.96 10.63 16.73
Macro-average 51.66 9.24 14.54

S
Binding 66.46 37.79 46.85
Reg. > 65.14 27.80 37.47
Reg. < 64.14 27.65 36.49

Ind. reg. > 50.67 9.59 15.82
Ind. reg. < 32.94 8.99 13.87

Micro-average 65.11 30.85 40.52
Macro-average 55.87 22.36 30.10

C
Binding 62.33 40.43 47.92
Reg. > 65.72 28.10 37.86
Reg. < 63.85 27.59 36.03

Ind. reg. > 59.38 10.74 17.73
Ind. reg. < 34.31 9.22 14.28

Micro-average 62.40 32.24 41.34
Macro-average 57.12 23.22 30.76

Table 5: Averaged precision, recall and F-score
over all test partitions for each edge type. Bind-
ing is a symmetric interaction whereas regulation
and indirect regulation are directed. The direction
is denoted with > and <. B = baseline classifier, S
= classifier with path structure features, C = clas-
sifier with confidence and structure features.

5.4 Manual Evaluation

The false positive predictions provide an ex-
tremely interesting research target from the hy-
pothesis generation perspective. First, some of
these predictions are evaluated as false positives
only because the text mining system that was used
to generate the underlying data has failed to extract
these relationships from the text, even though they
were present. And second, some of the predictions
evaluated as false positives may in fact constitute
existing undiscovered relationships, identification
of which, after all, is the overall goal of this work.

If some proportion of the former can be found, it
may at least hint at the possibility of the latter be-
ing present among the “false” positives as well. To
assess whether some of the false positives can be
attributed to extraction failures of the text mining

system underlying the EVEX network, we man-
ually evaluated from each partition the 10 false
positive pairs with the highest number of connect-
ing paths, 100 examples in total. This evaluation
was carried out using the edge-balanced partition-
ing with edges spanning across partitions and the
predictions were made with the classifier using
the path structure features. In this evaluation we
only determined whether an interaction exists be-
tween the genes and did not consider the interac-
tion types.

The manual evaluation was carried out in two
ways: First, we searched in the EVEX resource for
occurrences of every false positive pair, but this
time including also event occurrences among se-
quence homologs of the candidate genes. Given a
false positive pair geneA–geneB, we thus inspect
all pairs geneX–geneY such that geneX and geneA
belong to one homologous family, and similarly
also for geneY and geneB. This way, we are able
to detect corresponding events that are reported to
occur between similar genes in other organisms,
instead of focusing only on the human gene regu-
latory network. EVEX contains several gene fam-
ily definitions — we use HomoloGene (Sayers et
al., 2012) and Ensembl (Flicek et al., 2013) for the
evaluation, as these specifically focus on eukary-
otes and include the human genome. For 15 of the
100 pairs, we found a corresponding event among
HomoloGene families. Among families based on
the Ensembl resource, the number of pairs was
34. Further examining these pairs, we found that
3 out of the 15 HomoloGene-based interactions
(4 out of 34 with Ensembl) could be confirmed
to hold among the exact human genes predicted,
but the pair was not present in EVEX because of
gene symbol normalization failure. These are thus
cases of successful prediction of relationships not
present in the EVEX network, which could be sub-
sequently verified in the literature. The remaining
12 interactions were either reported to happen in
other organisms or they were protein complex in-
teractions and the exact subunits were not men-
tioned. For instance, predicted interacting genes
PTK2B and NGF are found to belong to interact-
ing families, with the sentence “NGF induced the
tyrosine phosphorylation of RAFTK...” supporting
this prediction. Even though the family assign-
ment has grouped PTK2B together with RAFTK,
the precise relation is that PTK2B is a subunit of
RAFTK and no confirmed interaction is known
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between PTK2B and NGF. Nonetheless, it is in-
triguing to observe that the system is able to pre-
dict a hypothetical interaction close to a known in-
teraction of related protein complexes.

In the second manual evaluation, the 100
pairs were searched from the STRING database
(Franceschini et al., 2013), which combines
protein-protein interaction evidence from various
sources, including text mining resources, experi-
mental data and curated databases. In this evalu-
ation all STRING evidence above the confidence
value of 0.150 (i.e. the low confidence threshold
on the STRING website) was considered as a pos-
sible interaction candidate. Out of the 100 pairs 31
were found to have some evidence in the STRING
database.

These results indicate that the system is able to
identify correct interactions not currently present
in the EVEX network.

6 Conclusions and Future Work

In this paper, we have introduced a machine-
learning hypothesis generation system, based on
large-scale literature mining networks and super-
vised learning. We have shown that the problem is
indeed learnable using features extracted from the
network context of each candidate pair. The classi-
fication performance is far above the random base-
line as well as the baseline classifier which only
considers the number of paths connecting the can-
didate in the network. This indicates that not only
the density but also the content in the network con-
text is used by the classifier.

In addition to the aforementioned machine
learning results, we have also explored some of
the difficulties associated with machine learning
in densely connected networks, where indepen-
dence of the individual instances does not hold in
many cases, causing problems in the application
of the standard cross-validation procedure. An-
other problematic issue is the non-uniform density
of the network where even few highly-connected
hub nodes may cause large variance in experimen-
tal results.

There is a number of future directions for this
work. First, the EVEX network offers aggrega-
tion of events not only by their Entrez Gene iden-
tifiers, but also by gene families defined through
gene sequence homology and spanning across
species. Incorporating events from different or-
ganisms would allow us to include the aspects

of cross-species, homology based function predic-
tion commonly used in genome annotation. Sec-
ond, we currently only utilize features from the
network, but not from the underlying text. It
would be of interest to explore what other features
from the texts, beyond the events themselves, can
contribute to the classification.
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Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake Vanderplas, Alexan-
dre Passos, David Cournapeau, Matthieu Brucher,
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Abstract 

 
With the rapid growth of electronic medical 
records (EMR), clinical information resides 
over abundantly in clinical narratives. Natu-
ral language processing (NLP) techniques 
have been applied to unlock such infor-
mation with promising results.  One of the 
popular NLP techniques used is supervised 
text classification. In supervised text classi-
fication, a collection of instances (e.g., doc-
uments or sentences), annotated with labels, 
can be used to train a classifier to assign la-
bels to an un-labeled instance. Traditionally, 
features used in text classification are uni-
grams, bigrams, and/or concepts. In this 
study, we explore the use of Latent Di-
richlet Allocation (LDA) to generate topic 
features to capture latent semantics and in-
corporate them into text classification.  We 
applied the method on the well-known clin-
ical concept assertion task in the i2b2 2010 
NLP challenge. The result shows significant 
improvement when incorporating topic 
modeling features into text classification 
(by 3.69 percent). Additionally, the inferred 
topic distribution offers the latent semantic 
interpretation. 

1 Introduction 

With the rapid growth of electronic medical 
records (EMRs), it becomes more and more 
essential to develop methods to automatically 
extract clinical information from EMRs, in-

cluding medical entities, relations between 
entities, and their corresponding attributes in a 
timely and accurate manner. Multiple natural 
language processing (NLP) techniques have 
been applied to unlock such information from 
clinical narratives. Most NLP applications use 
pattern-based information extraction (IE) [1, 
2] where lexical, syntactic and semantic pat-
terns are manually engineered for extracting 
related information from text. Recently, super-
vised text classification has become popular 
where a collection of labeled instances (e.g., 
documents or sentences or named entities) can 
be used to train a classifier to assign labels to 
an un-labeled instance [3, 4].  Common fea-
tures for text classification are surface level 
features including unigrams, bigrams, and/or 
concepts. A diverse range of classification al-
gorithms such as support vector machines 
(SVMs) [5], neural network, conditional ran-
dom fields (CRFs) [6] have been used. 

 Rcently, Latent Dirichlet Allocations (LDA) 
[7] has gained popularity in diverse fields due 
to the fact that it holds great promise as a 
means of gleaning actionable insight from the 
text or image datasets. LDA clusters both 
words and documents into topics by approxi-
mating word or term distributions.  

In this paper, we explore the incorporation of 
topic features acquired using LDA into text 
classification in the domain under the assump-
tion that a mixture of common topics can be 
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discovered from a collection of clinical docu-
ments and those topics can be discriminative 
for text classification.  

2 Background and Related Work 

In the following, we present the background 
information of LDA and summarize related 
work of utilizing topic modeling in biomedical 
informatics. 

2.1 LDA 

In text analysis, LDA represents a document 
as a mixture of fixed topics, each topic z has 
the weight 𝜽𝒛𝒔 in passage s and each topic is a 
distribution over a finite vocabulary of words, 
and each word w has a probability 𝝓 in topic z. 
Placing symmetric Dirichlet priors on 𝜽 and 
𝝓 , with 𝜽  ~  𝑫𝒊𝒓𝒊𝒄𝒉𝒍𝒆𝒕(𝜶)  and 
𝝓𝒛  ~  𝑫𝒊𝒓𝒊𝒄𝒉𝒍𝒆𝒕(𝜷) , where 𝜶  and 𝜷  are hy-
per-parameters to control the sparsity of distri-
butions, the generative model is given by:  

 𝑤!|𝑧! ,𝜙!!
!!   ~  𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝜙!! , 𝑖

= 1,… ,𝑊 
Eq-1 

 𝜙!  ~  𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 𝛽 ,
𝑧 = 1,… ,𝐾 

Eq-2 

 𝑧!|𝜃!!   ~  𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝜃!! ,
𝑖 = 1,… ,𝑊 

Eq-3 

  𝜃!~  𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 𝛼 , 𝑠 = 1,… , 𝑆 Eq-4 

where K is the total number of topics, W is 
the total number of words in the document 
collection, and 𝒔𝒊  and 𝒛𝒊  are the passage 
and the topic of the ith word 𝒘𝒊 respec-
tively. Each word in the vocabulary 
𝒘𝒊 ∈ 𝑽 = [𝒘𝟏,𝒘𝟐,… ,𝒘𝑾] is assigned to 
each latent topic variable 𝒛𝒊. Given a topic 
𝒛𝒊 = 𝒌, the expected posterior probability 
𝜽𝒔of topic mixings of a given passage s 
and the expected posterior probabilities 
𝝓𝒘𝒊
𝒛𝒊  of a word 𝒘𝒊 are calculated as below. 

 
𝜙!!
!! =

𝑛!!
! + 𝛽
𝑛!!
! +𝑊𝛽!

!!!
 

 
Eq-5 
 

 
𝜃! =

𝑛!! + 𝛼

𝑛!
! + 𝐾𝛼!

!!!
 

 
Eq-6 
 

where 𝑛!!
!  is the count of 𝒘𝒊  in topic k, 

and 𝑛!! is the count of topic k in passage s. 

2.2 Topic Modeling in Biomedical Infor-
matics 

In biomedical informatics, probabilistic top-
ic modeling has been applied to patients’ notes 
to discover relevant clinical concepts and rela-
tions between patients [8]. Angues et al. [9] 
applied unsupervised LDA to primary clinical 
dialogues for visualizing shared content in 
communication. Wang et al. developed Bi-
oLDA [10] to find complex biological rela-
tionships in recent PubMed articles. Wu and 
Xu [11] made use of LDA to rank gene-drug 
relationships in biomedical literatures based on 
Kullback-Leibler (KL) distance between topics 
derived from LDA. Bisgin et al. [12, 13] 
mined FDA drug labels using topic modeling. 
Fifty-two unique topics, each containing a set 
of terms, were identified and then the proba-
bilistic topic associations were used to meas-
ure the similarity between drugs. Zhou et al. 
[14] utilized the topic features to categorize 
the collections tweets into latent topics and 
those topics are used as features to train SVM 
prediction models for mining adverse effects 
labels. Newman et al [15] and Bundachus and 
Tresp [16] employed topic models to interpret 
MeSH terms. Chen et al. [17] proposed to use 
LDA to promote ranking diversity for ge-
nomics information retrieval and they claimed 
that topic distributions of retrieval passages 
can help identify aspects more accurately. 
Chen et al. [18] extended LDA by including 
background distribution to study microbial 
samples. Under their setting, each microbial 
sample is a document and each functional el-
ement is a word. They found that estimating 
the probabilistic topic model can uncover the 
configuration of functional groups. All of 
those studies have shown the potentiality of 
topic modeling. 
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3 Experimental Methods 

In this study, our main goal is to investigate 
the effectiveness of topic modeling in facilitat-
ing text classification. We first generate topic 
distribution for a collection of documents and 
then incorporate the generated topics as fea-
tures for text classification. In the following, 
we provide the description of the text classifi-
cation task. 

3.1 Clinic Concepts Assertion 

We use the clinical concept assertion data set 
used in the i2b2 2010 NLP challenge. The data 
set consists of 11960 concepts from 394 re-
ports in the training set and 18850 concepts 
from 477 reports in the test set. The class label 
for each concept refers to the status of how the 
medical concept pertains to the patient. There 
are six class labels: present, absent, hypothet-
ical, possible, conditional and association with 
someone else (AWSE for short). An assertion 
classifier can be trained to assign a class label 
to a concept based on its corresponding con-
text text. For example, in the sentence, “did 
not have an oxygen requirement upon dis-
charge”, “an oxygen requirement” is the con-
cept with concept type as “problem” and asser-
tion class label as “absent”. An assertion clas-
sifier is supposed to assign one of the six class 
labels to a problem concept. For this example, 
if the label “absent” is assigned to the concept 
“an oxygen requirement”, it implies that the 
classifier classifies the status of the concept or 
the problem correctly. 

3.2 Topics Generated as Features for 
Classification Models 

In our setting, words surrounding the assertion 
concepts are set as the document. The number 
of topics experimented ranges from 6 to 102 
with 6 as the incremental number. We use the 
package JGibbsLDA [19] for topic model gen-
eration. This package implements Gibbs sam-
pling to estimate parameters 𝜃 and 𝜙. Gibbs 
sampling is a special case of Markov-chain 
Monte Carlo (MCMC) [20] and often yields 
relatively simple algorithms than Variational 
Methods [21] for approximating inferences in 
high-dimensional models including LDA [22] 
though usually larger number of iterations is 
needed. In the I2B2 corpus, one or two asser-

tion concepts are annotated within one sen-
tence. Hence, the “document” in our work is 
short, only about 20 or fewer words involved. 
In this case, 200 iterations for the Gibbs sam-
pler are sufficient enough to yield a good es-
timation of the parameters. Then, the posterior 
𝜃! for documents and 𝜙!!

!!  for words are em-
ployed as topic features to train classifiers. 

3.3 Classifier selection 

We use LibSVM [23], one of the most popular 
implementations for SVM, for classifica-
tion. For SVM, firstly, we need to determine 
the kernel function and corresponding parame-
ter settings. In previous work, researchers 
claim that the linear function with C as 20000 
achieves the best results on rich set of features 
[24]. Nonetheless, they do not mention how 
and why they select 20000 as the value of C. 
We test linear function with the same setting. 
Yet, we find that model trained with radial 
basis function (RBF) with suitable setting of C 
and gamma (C=32 and gamma=0.0079) 
achieve the best results. Those settings are 
found with grid search strategy. There are two 
advantages using RBF kernel over using linear 
one. With grid search on RBF, we can find 
much lower C, and thus the training speed is 
much faster and secondly, the parameters cho-
sen with grid search strategy are more empiri-
cally sound.  
 

3.4 Feature extraction 

We adopt common features used by most i2b2 
NLP challenge participants as the base line. 
The following summarizes them: 
 
BOW, bigrams and concepts - Those features 
include the concept term itself, the four words 
preceding it, and the four words following it. 
We use the LVG annotator in Lexical Tools 
[25] to normalize each word (e.g., with respect 
to case and tense). Meanwhile, for the four 
words on the left and right of the concepts, 
bigrams are also composed.  
 
Contextual Features - We incorporate the 
ConText algorithm [26] to detect four contex-
tual properties in the sentence: absent (nega-
tion), hypothetical, historical, and not associ-
ated with the patient. The algorithm assigns 
one of three values to each feature: true, false, 
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or possible. Furthermore, it is found that loca-
tions of those contextual phrases can be dis-
criminative. Hence, we also distinguish 
whether the contextual feature is before and 
after the concept. 
 
Section features - Clinic notes are usually 
composed of two sections: admission and dis-
charge. They are quite related to patient status 
and a feature easily extracted. We create one 
feature to represent the Section Header with a 
string value normalized using LVG again. 
 
Orthographical features – We also define or-
thographical features to capture affixes, capi-
talization, mixture of digits and letters, all dig-
its and so on. 
 
Topic features – We incorporate the posterior 
distributions of the document against the topic 
and those of the words against the topic gener-
ated from unsupervised LDA.  
 
Table 1 shows the example features generated 
for the assertion task of “an oxygen require-
ment” in sentence “did not have an oxygen 
requirement upon discharge”. 
 
Table 1. Features extracted for the example 

sentence. 
Feature Types Features extracted 
BOW with window 4 did, not, have, upon, dis-

charge, 
Bigrams did-not, not-have, upon-

discharge 
Concepts an, oxygen, requirement 
Contextual Features not, discharge 
Section features  admission (found from 

the original text) 
Orthographical Fea-
tures 

none in this example 

Topic Features topic 1: 0.05, topic 2: 
0.25, … 

3.5 Experimental setting 

Three groups of experiments are set up, name-
ly, baseline (including all features except topic 
features), topic features as numerical values, 
and topic features as Boolean values. The 
baseline features are represented as bag of 
word (BOW) and the values are simply Boole-
an. Unlike	
  other	
  features,	
  topic	
  distributions	
  
are	
  in	
  numerical	
  forms	
  ranging	
  from	
  0	
  to	
  1.	
  
Therefore,	
  for the second group, we mixed the 

numerical values from topic features and other 
Boolean features. In the third one, we	
  convert	
  
the	
   numerical	
   representation	
   to	
   Boolean	
  
values	
  as	
  well	
  so	
  that	
  all	
  features	
  have	
  con-­‐
sistent	
   representations.	
   Some threshold is 
selected for topic numerical values, higher 
than the threshold as 1, otherwise as 0.  

3.6 Evaluation metrics 

We use standard evaluation metrics, namely, 
precision, recall and F-measure to evaluate the 
performance. We report both micro and macro 
metrics, where the former one computes the 
overall performance and the latter as the aver-
age across each class.  

4 Results and discussion 

4.1 Generating Topic Features 

In this work, we tested different topic numbers 
when generating topic features in order to ex-
amine how Gibbs Sampling influences the 
classification accuracy. Topic numbers exam-
ined ranges from 6 to 102 with an increment 
step as 6. We assumed symmetric priors and 
set hyper-parameters following the principle 
defined in Jun Zhu [27].  In the assertion clas-
sification task, there are 11,100 words in the 
training data and 10,934 words in the testing 
data after stop words were removed using the 
list provided by the Mallet package [28] and 
words were normalized with the porter stem-
mer [29]. The optimal result was obtained 

when the topic number was set to 12.  

4.2 Classification results 

Table 2. Evaluation experimental results. 

Feature 
Set 

Precision  
Micro 
(macro) 

Recall 
Micro 
(Macro) 

F-
Measure 
Micro 
(Macro) 

Baseline 
features as 
Boolean 
values 

0.8931 
(0.5908) 

0.8914 
(0.7770) 

0.8922 
(0.6713) 

Baseline + 
Numerical 
Topic fea-

tures  

0.9129 
(0.6327) 

0.9129 
(0.8378) 

0.9129 
(0.7209) 

Baseline + 
Boolean 

Topic fea-
tures   

0.9250 
(0.6913) 

0.9285 
(0.9046) 

0.9268 
(0.7837) 

32
Proceedings of the 5th International Symposium on Languages in Biology and Medicine (LBM 2013)



It was found from the micro evaluation that 
with baseline features, the prediction micro F-
measure was as high as 89% and macro F-
measure as 67%, consistent with what was  
achieved in previous studies [30]. After topic 
features were incorporated, the micro F-
measure increased from 0.8922 to 0.9129 for 
numerical topic features and 0.9268 after nu-
merical topic features were converted to Bool-
ean topic features using the threshold of 0.1 
(the threshold is determined by heuristic 
methods, namely, with simple observation of 
the distribution of topic values and a few tri-
als). For macro metrics, there were about 
0.0419 and 0.0608 increase in precision and 
recall respectively when using topic features 
as numerical  
features and 0.0586 and 0.0668 increase when 
using topic features as Boolean values. 
 

4.3 Confusion matrix 

Table 3 shows the confusion matrix for all six 
assertion class labels which can provide some 
insights on the contribution of topic features in 
assertion classification. From Table 3, we can 
see that when incorporating topic features as 
numerical values, the true positive rate for al-
most all assertion classes has increased except 
possible class with a decrease of 16, all as-
signed to hypothetical. It implies that possible 
and hypothetical tend to mix together. When 

topic features are incorporated as Boolean val-
ues, the performance becomes even better with 
an increase for all assertion classes.  

5 Topic distribution analysis 

In this section, we performed in depth analysis 
of topic distributions. 

5.1 Likelihood estimation 

In LDA, estimation of topic distributions of 
words was evaluated with Log-likelihood 
score of the posterior distribution of words 
given topics, one of the standard criteria for 
generative model evaluation. It provides a 
quantitative measurement of how well a topic 
model fits the training data. It is defined as the 
integrating out of all latent variables shown in 
Eq-7. The higher the score, the better the mod-
el fitness. 
 
In the Gibbs sampling iterations, the equation 
is simplified as the product of 𝜙!!

!!  and 𝜃!. In 
Figure 1, it shows the trend that the log-
likelihood goes with the change of the number 
of topics when we run LDA. When topic num-
bers increase from 6 to 102, the log-likelihood 
firstly decreases and after the number reaches 
around 50, the log-likelihood starts to increase. 
This is somewhat different from the common 
trend found in other domains [18]. Usually, the 
log-likelihood would increase with the in-
crease of the topic number and then after some 
peak, it would decrease. The peak is usually 
selected as the best number of topic. Probably, 
the trend observed in this corpus is related to 

Table 3. Confusion matrix for all three experiments 

 Baseline (Baseline + Numerical topic features) Baseline + Boolean topic features  

          truth 
predication absent AWSE conditional hypothetical possible present 

absent 3113 (3260) 3326 30 (17)  26 7 (9) 8 35 (20) 18 33 (32) 23 191 (294) 123 

AWSE 30 (7) 13 55 (63) 107 3 (11) 3 23 (25) 7 15 (25) 10 74 (22) 2 

conditional 27 (35) 10 10 (5) 8 31 (33) 38 23 (22) 6 16 (22) 21 72 (22) 3 

hypothetical 30 (38) 40 8 (19) 7 3 (1) 2 513 (579) 590 25 (47) 9 118 (180) 50 

possible 40 (53) 24 12 (13) 9 3 (3) 4 33 (22) 20 390 (374) 410 144 (180) 75 

present 244 (205) 228 30 (134) 36 124 (125) 140 90 (76) 76 404 (383) 401 12434 (12611) 12752 
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the text classification task defined here where we used short sentences as documents. 
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5.2 Illustration of connections between topic 
assignment of word and the assertion 
classes 

Since when topic number is 12, the classifier 
achieves the best result, we used the correspond-
ing topic distribution to illustrate the connections 
between the topic assignments and the six asser-
tion classes. 
 
Figure 2 is the graph to visualize the proportion 
of each topic associated with each assertion class. 
As shown here, almost each class has its own 
dominant topics. There are about 0.27 of absent 
falling into the second topic and about 0.16 into 
the third topic. AWSE spreads from topic 3, 7, 8 
and 9. Conditional involves topic 4, 7 and 3 while 
hypothetical topic 6, 3, 4 and 7. The highest one 
for possible is the 6th topic. Similarly, present 
falls into 10th, 5th, 7th and 3rd. 
 
Figure 3 shows the word cloud generated for 
each topic. The figure was generated with wordle 
[31]. We selected top 50 words generated by 
LDA for each of the 12 topics and generated 
sample documents based on word probability 
assigned by the LDA training model  as the input 
to wordle. The font size of the word shows how 
important the word in that topic. If we compared 
Figure 2 and Figure 3, there are some clear 
alignments between the assertion class and top-
ics. The following describes our investigation in 
detail. 

 
Absent - The dominant topic for class absent is 
topic 2. In the word cloud, we see without, no or 
deny are the majority words in topic 2. In addi-
tion, we can find that topic 11, though not much 
proportion in absent either, is much more in ab-
sent than in other classes. Terms as fever, nausea, 
bleed and infection can be seen in it besides deny. 
It may indicate that those are popular signs and 
symptoms physicians tend to record its presence 
or absence. 
 
AWSE - When we move on to the second class, 
AWSE, it is obvious to see that topic 9 is the 
largest component. Words like family or history, 
which is outstanding in Topic 9 tells that it is re-
lated to AWSE. Conditional and hypothesis - 
Topic 4 is mostly in conditional and hypothesis, 
in particular, in conditional. Firstly, terms like 
afebrile, wind, problem, tumor, issue or episode 
are often used to show some potential symptoms. 
Verbs, like become, resolve, control or remain, 
adjectives or connectives, like dry or far or if are 
often related to predictions or deductions. 
 
Hypothetical and possible - Classes hypothetical 
and possible share more even portions of topics 
than others, especially topic 6 and topic 7, since 
both of them include if and diverse disease terms. 
After we browsed the corpus, we found that those 
disease names are usually referring acute ones 
and usually happen under some conditions so 
they generally appear as possible as well as hypo-
thetical.  
 
Present - The assertion class present is the most 
dominant class with 13000 concepts in total. This 
seems to explain why there is more even distribu-
tion for present than other classes. But we can 
still find some topics are more dominant than 
others. Topic 5 can be regarded to the most im-
portant one. In word cloud, present, diabetes, 
mellitus chronic and syndrome are seen there. 
Those disease terms are chronic diseases. Thus, 
the patient status should be present usually. 

 
Figure 1.  Log-Likelihood distribution trend 34
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Figure 3 Proportion of topics for each assertion class where t stands for topic 

 

 
 

Figure 2. Word cloud for 12 topics. 
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Topic 3 and 10 also spread across all assertion 
classes. Words like blood, develop, note, de-
crease and elevate in topic 3, mild, consistent, 
moderate, severe, liver, ventricular and show in 
topic 10 and so on are big words there. It indi-
cates they are popular terms physicians or nurses 
use in their work. The reason that they two are 
split into two topics seem to be related to the fo-
cus of the two topics. Topic 3 looks more related 
to blood or something changeable in quantity 
while topic 10 seems to be closer to body parts. 
Topic 8 is an interesting topic. It mainly appears 
in AWSE and present and involves more words 
like dosage or measures. This seems to suggest 
that it is more related to existing diseases no mat-
ter the patient himself or someone else. Topic 12, 
which includes words, like chest, pain, breath, 
couth and shortness is more related to respiratory 
diseases. From Figure 2, we can see all classes 
except absent and AWSE have similar portion 
about it. This seems to suggest that many pa-
tients in the corpus have respiratory diseases, but 
not their family members. 

6 Conclusion and Future Work 

The experimental results show that topic model-
ing enjoys its natural advantages as shown in 
other domains and improves the performance of 
text classification. However, as we discussed in 
previous sections, even the topics generated look 
discriminative but quite a few topics did not 
align well with assertion classes.  In the future, 
we plan to incorporate supervision into topic 
modeling [32, 33] to generate topics that are dis-
criminative for the classification task. 
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Abstract

The openly available biomedical literature
contains over 5 billion words in publica-
tion abstracts and full texts. Recent ad-
vances in unsupervised language process-
ing methods have made it possible to make
use of such large unannotated corpora for
building statistical language models and
inducing high quality vector space repre-
sentations, which are, in turn, of utility
in many tasks such as text classification,
named entity recognition and query ex-
pansion. In this study, we introduce the
first set of such language resources cre-
ated from analysis of the entire available
biomedical literature, including a dataset
of all 1- to 5-grams and their probabilities
in these texts and new models of word se-
mantics. We discuss the opportunities cre-
ated by these resources and demonstrate
their application. All resources introduced
in this study are available under open li-
censes at http://bio.nlplab.org.

1 Introduction

Despite efforts to create annotated resources for
various biomedical natural language processing
(NLP) tasks, the number of unannotated domain
documents dwarfs that of annotated documents
by many orders of magnitude. The PubMed lit-
erature database provides access to over 23 mil-
lion citations, of which nearly 14 million include
an abstract. The biomedical sciences are also
at the forefront of the shift toward open-access
(OA) publication (Laakso and Björk, 2012), with
the PubMed Central (PMC) OA subset containing
nearly 700,000 full-text articles in an XML for-

mat.1 Together, these two resources constitute an
unannotated corpus of 5.5 billion tokens, effec-
tively covering the entire available biomedical sci-
entific literature and forming a representative cor-
pus of the domain (Verspoor et al., 2009).

The many opportunities created by the avail-
ability of large unannotated corpora for various
NLP methods are well established (see e.g. Rati-
nov and Roth (2009)), and models induced from
unannotated texts have been considered also in a
number of recent biomedical NLP studies (Stene-
torp et al., 2012; Henriksson et al., 2012). A par-
ticular focus of recent research interest are models
of meaning induced from unannotated text, with
numerous methods introduced for capturing both
the semantics of words as well as those of phrases
or whole sentences (Mnih and Hinton, 2008; Col-
lobert and Weston, 2008; Turian et al., 2010;
Huang et al., 2012; Socher et al., 2012). Although
such approaches generally produce better models
with more data, their computational complexity
has largely limited their application to corpus sizes
far below that of the biomedical literature. Re-
cently, a number of efforts have introduced new
language resources derived from very large cor-
pora and demonstrated approaches that allow word
representations to be induced from corpora of bil-
lions of words (Lin et al., 2010; Mikolov et al.,
2013). However, despite the relevance of such ap-
proaches to biomedical language processing, there
have to the best of our knowledge been no attempts
to apply them specifically to the biomedical litera-
ture.

Corpora containing billions of words can repre-
sent challenges even for fully automatic process-
ing, and most domain efforts consequently focus

1In this study, we do not consider PDF supplementary ma-
terials (see e.g. Yepes and Verspoor (2013)).
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Subset
PubMed PMC OA Total

Documents 22,120,269 672,589 22,792,858
Sentences 124,615,674 105,194,341 229,810,015
Tokens 2,896,348,481 2,591,137,744 5,487,486,225

Table 1: PubMed and the PMC OA statistics, representing the entire openly available biomedical litera-
ture. Note that PubMed statistics omit documents found also in PMC OA, and that only approximately
14 million of PubMed documents include an abstract.

n #
1 24,181,640
2 230,948,599
3 1,033,760,199
4 2,313,675,095
5 3,375,741,685

Table 2: Counts of unique n-grams.

only on small subsets of the literature at a time. To
avoid duplication of efforts, it is therefore desir-
able to build and distribute standard datasets that
can be utilized by the community. In this work,
we introduce and evaluate new language resources
derived from the entire openly available biomedi-
cal scientific literature, releasing these resources to
the community under open licenses to encourage
further exploration and applications of literature-
scale resources for biomedical text processing.

2 Materials and methods

2.1 Text sources

Article titles and abstracts were drawn from the
PubMed distribution as of the end of Septem-
ber 2013, constituting in total 22,723,471 records.
Full-text articles were, in turn, sourced from the
PubMed Central Open Access (PMC OA) section,
again as of the end of September 2013, and con-
stitute 672,589 articles. PubMed abstracts for ar-
ticles that are also present in PMC OA were dis-
carded, so as to avoid the duplication of the ab-
stract, which is also part of the PMC full text.

2.2 Text preprocessing

We first extracted document titles and abstracts
from the PubMed XML and extracted all text con-
tent of the PMC OA articles using the full-text arti-
cle extraction pipeline2 introduced for the BioNLP
Shared Task 2011 (Stenetorp et al., 2011). Since

2https://github.com/spyysalo/nxml2txt

AFUB 038070
epicardin/capsulin/Pod-1-mediated
22-methoxydocosan-1-ol
mmHg/101.50+/-12.86
5.26@1000
40.87degrees
electromyocinesigraphic
(1-5)-KDO
overpressurizing
rootsanel

Table 3: A random sample of 10 tokens appearing
exactly once in the openly available literature.

the pipeline extracts all text content, also includ-
ing sections not desired for the current resource
such as author affiliations and lists of references,
we used a custom script to post-process the out-
put and preserve only text from the title, abstract,
and main body of the articles. We further removed
inline formulae. Both for the abstracts and the
full-text articles, Unicode characters were mapped
to ASCII using the replacement table also used
in the BioNLP Shared Task pipeline. This step
is motivated by the number of commonly used
NLP tools which do not handle Unicode-encoded
text correctly, as well as the normalization gained
from mapping, for example, the character β to the
ASCII string beta — both of which are common
in the input text. The extracted text was then seg-
mented into sentences using the GENIA sentence
splitter3 and tokenized using a custom tokeniza-
tion script replicating the tokenizer used in the GE-
NIA Tagger (Tsuruoka et al., 2005). The resulting
corpus consists in total of 5.5B tokens in 230M
sentences. Detailed statistics are shown in Table 1.

2.3 N-grams

All 1- to 5-grams from the data were collected us-
ing the KenLM Language Model Toolkit (Heafield
et al., 2013) and a custom tool4 based on HAT-tries
(Askitis and Sinha, 2007). The counts of unique

3https://github.com/ninjin/geniass
4https://github.com/spyysalo/ngramcount
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Word2vec Random Indexing
Input: cysteine Input: methylation Input: cysteine Input: methylation

Word Distance Word Distance Word Distance Word Distance
cystein 0.865653 hypermethylation 0.815192 lysine 0.975116 hypermethylation 0.968435
serine 0.804936 hypomethylation 0.810420 proline 0.968552 acetylation 0.967535
Cys 0.798540 demethylation 0.780071 threonine 0.963178 fragmentation 0.961802
histidine 0.782239 methylated 0.749713 arginine 0.963163 plasticity 0.960208
proline 0.771344 Methylation 0.749538 histidine 0.962816 hypomethylation 0.959995
Cysteine 0.769645 methylations 0.745969 glycine 0.960027 replication 0.959925
aspartic 0.750118 acetylation 0.740044 tryptophan 0.959929 deletions 0.956500
active-site 0.745223 DNA-methylation 0.739505 methionine 0.959649 disturbance 0.955987
asparagine 0.735614 island1 0.738123 serine 0.958578 pathology 0.954187
cysteines 0.725626 hyper-methylation 0.730208 Cys 0.953123 asymmetry 0.953079

Table 4: Nearest words for selected inputs in the two models.

n-grams are shown in Table 2. Of the 24M unique
tokens, a full 14M are singleton occurrences. To
illustrate the long tail, ten randomly selected sin-
gleton tokens are shown in Table 3.

Having precomputed all n-grams enables an
efficient way of building word vectors, utiliz-
ing the fact that the list of n-grams includes all
unique windows focused on each word in the
corpus together with their count (or, correspond-
ingly, probability). This makes the n-gram model
a compressed representation of the corpus with
all salient information needed to build a distribu-
tional similarity model. As opposed to the stan-
dard technique of sliding a window across the cor-
pus, one can instead aggregate the information di-
rectly from the n-grams.

2.4 Word vectors from n-grams with
Random Indexing

Random indexing (Kanerva et al., 2000) is a
method for building a semantic word vector model
in an incremental fashion. First, every word is as-
signed an index vector with all elements equal to
zero, except for a small number of randomly dis-
tributed +1 and -1 values. The vector space repre-
sentation of a given word is then obtained by sum-
ming up the index vectors of all words in all its
context windows in the corpus.

We used an existing implementation of ran-
dom indexing5 that we modified to consider each
3-gram as the left half window of the rightmost
word, as well as the right half window of the left-
most word. The index vectors are weighted by
their corresponding probability. For the training
we used vector dimensionality of 400, 4 non-zeros
in the index vectors, and shifted index vectors in
the same way as was done for direction vectors by
Sahlgren et al. (2008). We also weighted the index

5http://www.nada.kth.se/˜xmartin/java/

vectors by their distance to the target word accord-
ing to the following equation: weighti = 21−distit

where distit is the distance to the target term. The
run took approximately 7.7 hours on a 16-core sys-
tem and the compressed model occupies 3.6GB on
disk. See Table 4 for an illustration of the similar-
ities captured by the word vectors.

2.5 word2vec word vectors
We also applied the word2vec6 implementation
of the method proposed by Mikolov et al. (2013)
to compute additional vector representations and
to induce word clusters. The algorithm is based
on neural networks and has been shown to out-
perform more traditional techniques both in terms
of the quality of the resulting representations as
well as in terms of computational efficiency. A
primary strength of the class of models introduced
by Mikolov et al. in comparison to conventional
neural network models is that they use a single
linear projection layer, thus omitting a number
of costly calculations commonly associated with
neural networks and making application to much
larger data sets than previously proposed methods
feasible. We specifically induce 200-dimensional
vectors applying the skip-gram model with a win-
dow size of 5. The model works by predicting the
context words within the window focused on each
word (see Mikolov et al. for details). Once the
vector representation of each word is computed,
the words are further clustered with the k-means
clustering algorithm with k = 1000.

We applied word2vec to create three sets of
word vectors: one from all PubMed texts, one
from all PMC OA texts, and one from the com-
bination of all PubMed and PMC OA texts. For
the PubMed and PMC OA subsets, the processing
required approx. 12 hours on a 12-core system and

6https://code.google.com/p/word2vec/
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Corpus
Method AnEM BC2GM NCBID
NERsuite 69.31 / 50.16 / 58.20 74.39 / 75.21 / 74.80 84.41 / 81.69 / 83.02
+ Word clusters 66.43 / 53.11 / 59.03 78.14 / 73.96 / 75.99 86.91 / 80.12 / 83.38
Stenetorp et al. 72.90 / 55.89 / 63.27 74.71 / 66.78 / 70.52 83.86 / 77.84 / 80.73

Table 5: Effect of features derived from word2vec word clusters on entity mention tagging
(precision/recall/F-score). The best results achieved in a previous evaluation using multiple word repre-
sentations (Stenetorp et al., 2012) are given for reference.

consumed at peak approx. 4.5GB of memory. The
combination of the two took 24 hours and 7.5GB
of memory. The resulting vector representations
for the three sets are 2-3GB in size. Table 4 shows
the nearest words (cosine distance) to selected in-
put words.

3 Extrinsic evaluation

To assess the quality of the word vectors and the
clusters created from these vectors, we performed
a set of entity mention tagging experiments using
three biomedical domain corpora representing var-
ious tagging tasks: the BioCreative II Gene Men-
tion task corpus (Smith et al., 2008) (gene and
protein names), the Anatomical Entity Mention
(AnEM) corpus (Ohta et al., 2012) (anatomical
entity mentions) and the NCBI Disease (NCBID)
corpus (Doğan and Lu, 2012) (disease names). We
compare the results with those of Stenetorp et al.
(2012), who previously applied these three cor-
pora in a similar setting to evaluate multiple word
representations induced from smaller corpora.

To perform the evaluation, we applied
AnatomyTagger (Pyysalo and Ananiadou, 2013),
an entity mention tagger using the NERsuite7

toolkit built on the CRFsuite (Okazaki, 2007) im-
plementation of Conditional Random Fields. For
each corpus, we trained one model with default
features, and another that augmented the feature
set with the cluster ID of each word. We selected
hyperparameters (c2 and label bias) separately for
each corpus and feature set using a grid search
with evaluation on the corpus development set.
We then trained a final model on the combination
of training and development sets, and evaluated
it on the test set. We measure performance using
exact matching, requiring both tagged mention
types and their spans to be precisely correct.8

7http://nersuite.nlplab.org
8Note that this criterion is stricter than used in some pre-

vious studies on these corpora.

Table 5 shows the extrinsic evaluation results.
We find that the word representations are bene-
ficial for tagging performance for all three cor-
pora, improving the performance of a state-of-the-
art tagger and surpassing the previously reported
results in two out of three cases.

4 Conclusion

We have introduced several resources of general
interest to the BioNLP community. First, we as-
sembled a pipeline which fully automatically pro-
duces a reference conversion from the complex
PubMed and PubMed Central document XML for-
mats into ASCII text suitable for standard text pro-
cessing tools. Second, we induced 1- to 5-gram
models from the entire corpus of over 5 billion
tokens. Third, we induced vector space repre-
sentations using the word2vec and random index-
ing methods, producing the first word representa-
tions induced from the entire available biomedi-
cal literature. These can serve as drop-in solu-
tions for BioNLP studies that can benefit from pre-
computed vector space representations and lan-
guage models.

In addition to building the resources and mak-
ing them available, we also illustrated the use of
these resources for various named entity recog-
nition tasks. Finally, we have demonstrated the
potential of calculating semantic vectors from an
existing n-gram based language model using ran-
dom indexing. All tools and resources introduced
in this study are available under open licenses at
http://bio.nlplab.org.
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Abstract

The objective of this work is to extract and
to rank biomedical terms from free text.
We present new extraction methods that
use linguistic patterns specialized for the
biomedical field, and use term extraction
measures, such as C-value, and keyword
extraction measures, such as Okapi BM25,
and TFIDF. We propose several combina-
tions of these measures to improve the ex-
traction and ranking process. Our experi-
ments show that an appropriate harmonic
mean of C-value used with keyword ex-
traction measures offers better precision
results than used alone, either for the ex-
traction of single-word and multi-words
terms. We illustrate our results on the ex-
traction of English and French biomedi-
cal terms from a corpus of laboratory tests.
The results are validated by using UMLS
(in English) and only MeSH (in French) as
reference dictionary.

1 Introduction
Language evolves faster than our ability to for-
malize and catalog concepts or possible alternative
terms of these concepts. This is even more true for
French in which the number of terms formalized in
terminologies is significantly less important than
in English. That is why our motivation is to im-
prove the precision of automatic terms extraction
process. Automatic Term Recognition (ATR) is a
field in language technology that involves the ex-
traction of technical terms from domain-specific
language corpora (Zhang et al., 2008). Simi-
larly, Automatic Keyword Extraction (AKE) is the
process of extracting the most relevant words or
phrases in a document with the propose of auto-
matic indexing. Keywords, which we define as a
sequence of one or more words, provide a com-
pact representation of a document’s content; two

popular AKE measures are Okapi BM25 (Robert-
son et al., 1999) and TFIDF (also called weight-
ing measures). These two fields are summarized
in Table 1.

ATR AKE
Input one large corpus single document

Output terms of a domain keywords of a doc
Domain very specific none

Exemples C-value TFIDF, Okapi

Table 1: Differences between ATR and AKE.

In our work, we adopt as baselines an ATR
method, C-value (Frantzi et al., 2000), and the
best two AKE methods (Hussey et al., 2012), pre-
viously mentioned and considered state-of-the-art.
Indeed, the C-value, compared to other ATR meth-
ods, often gets best precision results and specially
in biomedical studies (Knoth et al., 2009), (Zhang
et al., 2008), (Zhang et al., 2004). Moreover, C-
value is defined for multi-word term extraction but
can be easily adapted for single-word term and it
has never been applied to French biomedical text,
which is appealing in our case.

Our experiments present a great improvement
of the precision with these new combined meth-
ods. We give priority to precision in order to focus
on extraction of new valid terms (i.e., for a can-
didate term to be a valid biomedical term or not)
rather than on missed terms (recall).

The rest of the paper is organized as follows:
Section 2 describes the related work in the field of
ATR, and specially the uses of the C-value; Sec-
tion 3 presents our combination of measures for
ranking candidate terms; Section 4 shows and dis-
cusses our experiment results; and Section 5 con-
cludes the paper.

2 Related work
ATR studies can be divided into four main cate-
gories: (i) rule-based approaches, (ii) dictionary-
based approaches, (iii) statistical approaches, and
(iv) hybrid approaches. Rule-based approaches for
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instance (Gaizauskas et al., 2000), attempt to re-
cover terms thanks to the formation patterns, the
main idea is to build rules in order to describe
naming structures for different classes using or-
thographic, lexical, or morphosyntactic character-
istics. Dictionary-based approaches use existing
terminology resources in order to locate term oc-
currences in texts (Krauthammer et al., 2004). Sta-
tistical approaches are often built for extracting
general terms (Eck et al., 2010); the most ba-
sic measure is frequency. C/NC-value (Frantzi
et al., 2000), is another statistical method well
known in the literature that combines statistical
and linguistic information for the extraction of
multi-word and nested terms. While most stud-
ies address specific types of entities, C/NC-value
is a domain-independent method. It was also
used for recognizing terms from biomedical liter-
ature (Hliaoutakis et al., 2009). The C/NC-value
method was also applied to many different lan-
guages besides English (Frantzi et al., 2000) such
as Japanese (Mima et al., 2001), Serbian (Ne-
nadić et al., 2003), Slovenian (Vintar, 2004), Pol-
ish (Kupsc, 2006), Chinese (Ji et al., 2007), Span-
ish (Barrón et al., 2009), and Arabic (Khatib et al.,
2010), however to the best of our knowledge not
to French. An objective of this work is to combine
this method with AKE methods and to apply the
combined measures to English and French. We be-
lieve that the combination of biomedical term ex-
traction and the extraction of keywords describing
a document, could be beneficial since keywords
techniques give greater importance to the actual
terms of this domain. This combination has never
been proposed and experimented in the literature.

3 Proposed Methodology for Automatic
Biomedical Term Extraction

This section describes the baselines measures and
their customizations as well as the new combina-
tions of these measures that we propose for au-
tomatic biomedical terms extraction and ranking.
Our method for automatic term extraction has four
main steps: (1) Part-of-Speech tagging, (2) Can-
didate terms extraction,(3) Ranking of candidate
terms, (4) Computing of new combined measures.

Note, C-value is a method that deals with an
unique corpus as input whereas AKE methods deal
with several documents (cf. Table 1) then we need
to do the union of documents for C-value to con-
sider the whole corpus as an unique document.
A preliminary step is the creation of patterns for

French and English, as described hereafter.

3.1 Part-of-Speech tagging
Part-of-speech (POS) tagging is the process of as-
signing each word in a text to its grammatical cat-
egory (e.g., noun, adjective). This process is per-
formed based on the definition of the word or on
the context which it appears in.

We apply part-of-speech to the whole corpus.
We evaluated three tools (TreeTagger, Stanford
Tagger and Brill’s rules), and finally choose Tree-
Tagger which gave best results and is usable both
for French and English.
3.2 Candidate terms extraction
As previously cited work, we supposed that
biomedical terms have similar syntactic structure.
Therefore, we build a list of the most common
lexical patterns according the syntactic structure
of biomedical terms present in the UMLS1 (for
English) and the French version of MeSH2 (for
French). We also do a part-of-speech tagging
of the biomedical terms using TreeTagger3, then
compute the frequency of syntactic structures. We
finally choose the 200 highest frequencies to build
the list of patterns for each language. The number
of terms used to build these lists of patterns was 2
300 000 for English and 65 000 for French.

Before applying measures we filter out the con-
tent of our input corpus using patterns previously
computed. We select only the candidate terms
which syntactic structure is in the patterns list.
3.3 Ranking of candidate terms
3.3.1 Using C-value
The C-value method combines linguistic and sta-
tistical information (Frantzi et al., 2000); the lin-
guistic information is the use of a general regular
expression as linguistic patterns, and the statistical
information is the value assigned with the C-value
measure based on frequency of terms to com-
pute the termhood (i.e., the association strength
of a term to domain concepts). The aim of the
C-value method is to improve the extraction of
nested terms, it was specially built for extracting
multi-word terms.

C-value(a) =





w(a)× f(a) if a /∈ nested

w(a)×
(
f(a)− 1

|Sa| ×
∑

b∈Sa

f(b)

)

otherwise
(1)

1
http://www.nlm.nih.gov/research/umls

2
http://mesh.inserm.fr/mesh/

3
www.cis.uni-muenchen.de/˜schmid/tools/TreeTagger

46
Proceedings of the 5th International Symposium on Languages in Biology and Medicine (LBM 2013)



Where a is the candidate term, w(a) =
log2(|a|), |a| the number of words in a, f(a) the
frequency of a in the unique document, Sa the
set of terms that contain a and |Sa| the number
of terms in Sa. In a nutshell, C-value either uses
frequency of the term if the term is not include in
other terms (first line), or decrease this frequency
if the term appears in other terms, by using the fre-
quency of those other terms (second line).

We modified the measure in order to extract all
terms (single-word + multi-words terms), as sug-
gested in (Barrón et al., 2009) in different man-
ners: in the formula w(a) = log2(|a|), we use
w(a) = log2(|a|+1) in order to avoid null values
(for single-word terms). Note that we do not use
a stop word list nor a threshold for frequency as it
was originally proposed.

3.3.2 Using Okapi - TFIDF

Those measures are used to associate each term
of a document with a weight that represents its
relevance to the meaning of the document it ap-
pears relatively to the corpus it is included in. The
output is a ranked list of terms for each docu-
ment, which is often used in information retrieval,
to order documents by their importance given a
query (Robertson et al., 1999). Okapi can be seen
as an improvement of TFIDF measure, taking into
account the document length.

The outputs of Okapi and TFIDF are calcu-
lated with a variable number of data so their val-
ues are heterogeneous. To manipulate these lists,
the weights obtained from each document must
be normalized. Once values normalized we have
to merge the terms into a single list unique for
the whole corpus to compare the results. Clearly
the precision will depend on the method used
to perform such merging. We merged following
three functions, which calculate respectively the
sum(S), max(M) and average(A) of the measures
values of the term in whole the corpus. At the
end of this task we have three lists from Okapi and
three lists from TFIDF. The notation for these lists
are OkapiX(a) and TFIDFX(a), where a is the
term, X the factor ∈ {M,S,A}. For example,
OkapiM (a) is the value obtained by taking the
maximum Okapi value for a term a in the whole
corpus.

3.4 Computing the New Combined Measures
With the goal of improving the precision of terms
extraction we have conceived two new combined
measures schemes, described hereafter, taking into
account the values obtained in the above steps.

3.4.1 F-OCapi and F-TFIDF-C
Considered as the harmonic mean of the two used
values, this method has the advantage of using all
the values of the distribution.

F -OCapiX(a) = 2× OkapiX(a)× C-value(a)
OkapiX(a) + C-value(a)

(2)

F -TFIDF -CX(a) = 2× TFIDFX(a)× C-value(a)
TFIDFX(a) + C-value(a)

(3)

3.4.2 C-Okapi and C-TFIDF
Our assumption is that C-value can be more rep-
resentative if the frequency, in Equation (1), of the
terms is replaced with a more significant value,
in this case the Okapi’s or TFIDF’s values of the
terms (over the whole corpus).

C-mX(a) =





w(a)×mX(a) if a /∈ nested

w(a)×
(
mX(a)− 1

|Sa| ×
∑

b∈Sa

mX(b)

)

otherwise

Where mX(a) = {OkapiX |TFIDFX}, and
X ∈ {M,S,A}.

4 Experiments and Results
4.1 Data and Experimental Protocol
We used biological laboratory tests, Labteston-
line.org, as corpus. This site provides informa-
tion in several languages to patient or family care-
giver on clinical lab tests. Each test which forms
a document in our corpus, includes the formal lab
test name, some synonyms and possible alternate
names as well as a description of the test. Our
extracted corpus contains 235 clinical tests (about
400 000 words) for English and 137 (about 210
000 words) for French.

To automatically validate our candidate terms
we compute a validation dictionary that include
the official name, the synonyms and alternate
names of the labtestonline tests plus all UMLS
terms for English and the MeSH terms for French.
These terminologies are references in the domain
therefore each extracted term found in those is val-
idated as a true term. Note that as a consequence
we obtain 100% Recall with the whole list of ex-
tracted terms.
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4.2 Experiments and results

Results are evaluated in terms of Precision ob-
tained over the top k terms at different steps of
our work presented in previous section. Okapi
and TFIDF provided three lists of ranked can-
didate terms (M,S,A). For each combined mea-
sure using Okapi or TFIDF , the experiments
are done with the three lists. Therefore, the num-
ber of ranked list to compare is C-value(1) +
Okapi(3) + TFIDF (3) + F -OCapi(3) + F -
TFIDF -C(3)+C-Okapi(3)+C-TFIDF (3) =
19. In addition we experimented either for all (sin-
gle and multi) or multi terms which finally give 38
ranked lists. Then, we select all terms (single and
multi) or only muli-terms (19 × 2 = 38 experi-
ments for each language).

The following lines show part of the experiment
results done all or multi terms, only and consider-
ing the top 60, 300 and 900 extracted terms, be-
cause it is appropriate and easier for an expert to
evaluate the first best extracted terms. Table 2 and
Table 3 compare the precision between the best
baselines measures and the best combined mea-
sures. Best results were obtained in general with
F -TFIDF -CM for English and F -OCapiM for
French. These tables prove that the combined
measures based on the harmonic mean are bet-
ter than the baselines measures, and specially
for multi word terms, for which the gain in pre-
cision reaches 16%. This result is particularly
positive because in the biomedical domain it is of-
ten more interesting to extract multi-word terms
than single-word terms. However, one can no-
tice that results obtained to extract all terms with
C-OkapiS and C-TFIDFS are not better than
OkapiX or TFIDFX used directly. The reason is
because the performance of those new combined
measures is affected when single word terms are
extracted. Definitively, the new combined mea-
sures are really performing for multi word term.

Results of AKE methods for English show that
TFIDFX obtains better results than OkapiX . The
main reason for this, is because the size of the
English corpus is larger than the French one, and
Okapi is known to perform better when the corpus
size is smaller (Lv et al., 2011).

In addition, Table 3 shows that C-value can
be used to extract French biomedical terms with
a better precision than what has been obtained
in previous cited works with different languages.
The precision of C-value for the previous work

was between 26% and 31%.
All Terms Multi Terms

60 300 900 60 300 900
OkapiM 0.96 0.95 0.82 0.68 0.62 0.54
OkapiS 0.83 0.89 0.85 0.58 0.57 0.55
OkapiA 0.72 0.31 0.27 0.48 0.39 0.26

TFIDFM 0.97 0.96 0.84 0.71 0.63 0.54
TFIDFS 0.96 0.95 0.93 0.82 0.71 0.61
TFIDFA 0.78 0.74 0.63 0.50 0.40 0.37
C-value 0.88 0.92 0.89 0.72 0.71 0.62

F -OCapiM 0.73 0.87 0.84 0.79 0.69 0.58
F -TFIDF -CM 0.98 0.97 0.86 0.98 0.73 0.65

C-OkapiS 0.88 0.86 0.80 0.61 0.58 0.53
C-TFIDFS 0.96 0.95 0.86 0.85 0.71 0.61

Table 2: Extract of precision comparison for term
extraction for English.

All Terms Multi Terms
60 300 900 60 300 900

OkapiM 0.90 0.61 0.37 0.53 0.31 0.18
OkapiS 0.30 0.31 0.37 0.23 0.30 0.37
OkapiA 0.52 0.31 0.16 0.30 0.17 0.16

TFIDFM 0.75 0.51 0.37 0.45 0.28 0.18
TFIDFS 0.68 0.48 0.42 0.53 0.33 0.22
TFIDFA 0.12 0.39 0.29 0.17 0.16 0.11
C-value 0.43 0.42 0.43 0.35 0.34 0.26

F -OCapiM 0.73 0.62 0.43 0.65 0.35 0.22
F -TFIDF -CM 0.85 0.57 0.39 0.62 0.31 0.19

C-OkapiS 0.28 0.32 0.34 0.23 0.28 0.20
C-TFIDFS 0.65 0.55 0.38 0.50 0.32 0.19

Table 3: Extract of precision comparison for term
extraction for French.

We also have done experiments with two more
corpus: (i) the Drugs data from MedlinePlus4 in
English and, (ii) PubMed5 citations’ titles in En-
glish and French, we have verified that the new
combined measures are performing better, par-
ticularly these based on the harmonic mean, F -
TFIDF -CM and F -OCapiM .

5 Conclusions and Perspectives
This work present a methodology for term ex-
traction and ranking for two languages, French
and English. We have adapted C-value to extract
French biomedical terms, which was not proposed
in the literature before. We presented and evalu-
ated two new measures thanks to the combination
of three existing methods. The best results were
obtained by combining C-value with the best re-
sults from AKE methods, i.e., F -TFIDF -CM for
English and F -OCapiM for French.

For our future evaluations, we will enrich our
dictionaries with BioPortal’s6 terms for English
and CISMeF’s7 terms for French. Our next task
will be the extraction of relations between these
new terms and already known terms, to help in
ontology population. In addition, we are currently
implementing a web application that implements
these measures for the community.

4
http://www.nlm.nih.gov/medlineplus/

5
http://www.ncbi.nlm.nih.gov/pubmed

6
http://bioportal.bioontology.org/

7
http://www.chu-rouen.fr/cismef/
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Abstract

In this paper, we propose an open informa-
tion extraction (Open IE) system, which
attempts to extract relations (or facts) of
any type from biomedical literature. What
distinguishes our system from existing
Open IE systems is that it uses predicate-
argument structure patterns to detect the
candidates of possible biomedical facts.
We have manually evaluated the output of
our system and found that it is reasonably
accurate (50% precision). We have also
applied our system to the whole MED-
LINE and revealed that the relations be-
tween ‘Amino Acid, Peptide, or Protein’
entities are the most frequently described
type of relations.

1 Introduction

Relation extraction is one of the most important
tasks in biomedical text mining. Most of the stud-
ies on this topic have focused on specific or pre-
defined types of relations, such as protein-protein
interaction (Yakushiji et al., 2006; Airola et al.,
2008; Miwa et al., 2009), drug-drug interaction
(Segura-Bedmar et al., 2013), and biomolecular
events (Nédellec et al., 2013). The scope of the
types of relations that can be extracted by existing
approaches is, therefore, inherently limited.

Recently, an information extraction paradigm
called Open Information Extraction (Open IE) has
been introduced to overcome the above-mentioned
limitation (Banko et al., 2007; Fader et al., 2011;
Mausam et al., 2012). Open IE systems aim to
extract all possible relations from text. Although
the concept of Open IE is certainly appealing,
we have found that state-of-the-art Open IE sys-
tems, namely Reverb (Fader et al., 2011) and OL-
LIE (Mausam et al., 2012), do not perform well
on biomedical text – they can capture relational

phrases with reasonable accuracy but often fails to
correctly identify their arguments.

This observation has motivated us to develop an
Open IE system specifically designed for biomed-
ical texts. Our system uses Predicate-Argument
Structures (PAS) patterns to detect the candidates
of possible biomedical facts. We decided to use
PAS patterns because they are well normalized
forms that represent deep syntactic relations. In
other words, multiple syntactic variations are re-
duced to a single PAS, thereby allowing us to
cover many kinds of expressions with a small
number of PAS patterns. We first apply an HPSG-
based syntactic parser to input sentences, and then
match its output to predefined PAS patterns to de-
tect pairs of relevant noun phrases (NPs). Named
entities in these pairs are then detected; and finally,
relations between these entities are extracted. The
output of our system is, hopefully, a set of all se-
mantic relations contained in the input.

Our contribution in this paper is twofold: (1)
a simple but effective set of syntactic patterns
for general relation extraction, and (2) an Open
IE system that extracts biomedical facts from
biomedical text; to the best of our knowledge, our
system is the first Open IE system that attempts
to detect relations from the whole MEDLINE in a
general schema.

2 Related Work

Banko et al. (2007) introduced Open IE as a novel
paradigm that facilitates domain independent dis-
covery of relations extracted from text and readily
scales to the diversity and size of the Web corpus.
The system detects the tuples in the format of (ar-
gument 1; relational phrase; argument 2) without
a pre-specified set of relations or domain-specific
knowledge engineering. Several Open IE systems
have been proposed up to now, including TextRun-
ner (Banko et al., 2007), ReVerb (Fader et al.,
2011), OLLIE (Mausam et al., 2012).
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In the biomedical domain, large-scale event
extraction has attracted many researchers (Rind-
flesch and Fiszman, 2003; Miyao et al., 2006;
Björne et al., 2010; Taura et al., 2010; Rind-
flesch et al., 2011; Kilicoglu et al., 2012; Van Lan-
deghem et al., 2013). Miyao et al. (2006) pro-
pose a system that extracts verb-mediated relations
between genes, gene products, and diseases from
MEDLINE. The output of their system is served
as a database for MEDIE (Ohta et al., 2010), a se-
mantic search engine on MEDLINE. Björne et al.
(2010) apply their system to the titles and abstracts
of all PubMed citations. Kilicoglu et al. (2012)
also run their system on the entire set of PubMed
citations to create SemMedDB, a repository of se-
mantic predications.

SemRep (Rindflesch and Fiszman, 2003; Rind-
flesch et al., 2011) extracts semantic relationships
from the titles and abstracts of all PubMed cita-
tions. Their relationships are represented by 30
specific predicates restricted to a limited number
of verbs. Nebot and Berlanga (2012) extracted ex-
plicit binary relations of the form <subject, predi-
cate, object> from CALBC initiative. To detect
candidate relations, they proposed seven simple
lexico-syntactic patterns. These two systems per-
form general relations extraction similar to ours,
but unlike our system, neither of them use PAS
patterns.

3 Our Open IE Framework

Since we focus on a general schema of relations,
there is no labeled corpus suitable for learning the
extraction model. Our system, therefore, relies
solely on the input text and its linguistic charac-
teristics such as the form, meaning, and context of
the words. More specifically, we create patterns to
capture these characteristics of text and then ex-
tract relations.

In order to find appropriate PAS patterns, we
have first observed textual expressions that rep-
resent biomedical relations in GENIA corpus
and found that those relations are usually ex-
pressed with verbs and prepositions; for exam-
ple, EntityA {affect, cause, express, inhibit ...}
EntityB or EntityA {arise, happen, ...} {in,
at, on ...} Location. Our patterns in predicate-
argument form and their corresponding examples
are presented in Table 1. Patterns 1, 2, 3 and 4 are
presented for transitive verbs. Intransitive verbs
are captured by Pattern 5. The final pattern (Pat-

tern 6) is used for prepositions, which would cap-
ture localization and whole-part relations. The el-
ements NP1 and NP2 in each pattern are consid-
ered as candidate relations. In our system, Enju,
an HPSG parser (Matsuzaki et al., 2007; Miyao et
al., 2008), is employed to extract these candidates.

We then apply MetaMap1 (Aronson and Lang,
2010) to identify named entities in the extracted
NP pairs. At this stage, we apply two post-
processes to remove false positive output from
MetaMap. In the first process, we remove all enti-
ties that are verbs, adjectives, prepositions or num-
bers because we are only interested in noun or
noun phrase ones. The second post-process is used
to avoid common noun entities, such as ‘binding’,
‘behaviors’ and ‘kinds’. In this process, we apply
MetaMap to the whole MEDLINE and construct a
dictionary of named entities and their occurrences.
We then remove highly frequent entities from the
dictionary. This dictionary is used to check the
validity of named entities. Our statistical results
on the whole MEDLINE revealed that the post-
processes filtered out 70.83% of the entities ex-
tracted by MetaMap. This filtering will help our
system avoid extracting irrelevant relations.

After the above two post-processes, we obtain
named entities in relevant NP pairs. Let us denote
by <NP1, NP2> a relevant NP pair, by e1i (i =
1, 2, ...) entities in NP1, and by e2j (j = 1, 2, ...)
entities in NP2. Since NP1 and NP2 are relevant,
we assume that every pair of entities <e1i, e2j>
is relevant, which means that they constitute a se-
mantic relation. However, this assumption is so
strong that it may create incorrect relations. In
order to improve the precision of our system, we
use the UMLS semantic network2 as a constraint
in extracting semantic relations. Let us denote by
<s1, s2> the pair of semantic types of <e1i, e2j>.
If and only if <s1, s2> exists in this semantic net-
work, <e1i, e2j> can constitute a relation.

4 Experimental Results

4.1 Performance on General Relations

Since there is no available labeled corpus for a
general schema of relations, we manually evalu-
ated our system on our own test set. This test set
was created by randomly selecting 500 sentences
from MEDLINE. Our system was given this set

1We employed MetaMap 2012 version 2 from http://
metamap.nlm.nih.gov/#Downloads

2http://semanticnetwork.nlm.nih.gov/
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No. Type PAS Patterns Examples
1

Verb

NP1 ← Verb→ NP2 protein RepA(cop)← affects→a single amino acid
2 NP1 ← Verb→ by +NP2 Diabetes← induced→ by streptozotocin injection
3 NP1 ← Verb→ NP ′ Endothelin-1 (ET-1) and ET-3← had→ a strong effect

↑
Prep.→ NP2

↑
in→ all trabeculae

4 NP1 ← be→ ADJP ← Prep.→ NP2 EPO receptor← be→ present← in→ tubular epithelial cells
5 NP1 ← Verb← Prep.→ NP2 subacute hepatitis← results← from→ intravenous drug use
6 Prep. NP1 ← Prep.→ NP2 vitronectin← in→ the connective tissue

Table 1: Our PAS patterns focus on verb and preposition predicates. An arrow goes from a to b means
a modifies b and a is called a predicate, b is called an argument. <NP1, NP2> is a relevant NP pair in
each pattern.

Conf. # of Rel. Precision

ReVerb
≥0.3 75 46.67
≥0.5 72 47.22
≥0.7 58 46.55

OLLIE
≥0.3 124 38.71
≥0.5 114 41.22
≥0.7 89 42.69

Our patterns - 438 50.00

Table 2: The precisions of relation extraction on
our test set when using ReVerb and OLLIE with
three confidence scores of 0.3, 0.5 and 0.7, and
our PAS patterns to extract NP pairs.

as input, and returned a set of binary relations as
output.

For comparison, we conducted experiments us-
ing two state-of-the-art Open IE systems, namely,
ReVerb (Fader et al., 2011) and OLLIE (Mausam
et al., 2012). We employed these two systems
to extract relevant NP pairs in place of our PAS
patterns. We chose confidence scores of 0.3, 0.5
and 0.7 as the thresholds for accepting generated
tuples as candidate relations in our experiments.
Next, the other processes were applied in the same
way as our system. We report our evaluation re-
sults in Table 2. Compared with ReVerb and OL-
LIE, our PAS patterns generated the highest num-
ber of relations with the highest precision. This
indicates that our PAS patterns perform better than
the other approaches.

The causes of false positive relations include
MetaMap errors, parser errors, and our greedy ex-
traction. Since our system is based on the Enju
parser, if the parser captures wrong noun phrases,
our system will generate incorrect relevant pairs.
For example, with this input “{[Laminin]}NP 1

was located in {the zone of the basal [mem-
brane], whereas [tenascin] was mainly found in
the mucosal [vessels]}NP 2”, based on the NP pair

<NP1, NP2>, the system returned two relations
r1 (Laminin, membrane) and r2 (Laminin, ves-
sels). In this example, the parser failed to detect
the second NP of the pair; the correct one should
be ‘the zone of the basal membrane’, not includ-
ing ‘whereas’ clause. This error caused a false
positive relation of (Laminin, vessels). Extracted
relation r1 (Laminin, membrane) is also not cor-
rect because of the MetaMap error, i.e., the entity
‘membrane’ should be ‘basal membrane’.

Although we use the Semantic Network to limit
the generated relations, there are several false pos-
itive ones. For instance, given an input sen-
tence: “{Efficiency of presentation of a peptide
epitope by a [MHC class I molecule]}NP 1 de-
pends on {two parameters: its binding to the
[MHC] molecule and its generation by intracellu-
lar Ag processing}NP 2”, the pair <NP1, NP2>
created a relation of (MHC class I molecule,
MHC). This relation resulted from our greedy ex-
traction. However, it is incorrect because ‘MHC
class I molecule’ or ‘MHC’ is not the main sub-
ject of this sentence.

Table 2 shows that when using ReVerb and OL-
LIE to generate NP pairs, the numbers of extracted
relations are significantly lower than those when
using our patterns. The main reason is that these
systems have failed to capture NP pairs in many
sentences. In our test set, ReVerb and OLLIE
could not extract NP pairs from 150 sentences and
95 sentences respectively; while our system could
not extract pairs from 14 sentences only. Given
the input sentence “{[Total protein], [lactate dehy-
drogenase] (LDH), [xanthine oxidase] (XO), [tu-
mor necrosis factor] (TNF), and [interleukin 1]
(IL-1)}NP 1 were measured in {[bronchoalveolar
lavage fluid] (BALF)}NP 2 .”, ReVerb and OLLIE
cannot extract any tuples, while our system gener-
ated a NP pair of <NP1, NP2> and returned five
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AIMed BioInfer LLL
Pre. Re. Pre. Re. Pre. Re.

(1) 71.8 48.4 - - - -
(2) 52.9 61.8 47.7 59.9 72.5 87.2
(3) 55.0 68.8 65.7 71.1 77.6 86.0
Our system 30.3 52.5 51.2 44.9 87.5 81.5

Table 3: Performance of our system on AIMed,
BioInfer and LLL corpora, compared with some
notable systems for PPI: (1) Yakushiji et al.
(2006), (2) Airola et al. (2008), and (3) Miwa et
al. (2009).

MedLine DrugBank
Pre. Re. Pre. Re.

Best system 55.8 50.5 81.6 83.8
Worst system 62.5 42.1 38.7 73.9
Our PAS patterns 27.0 62.5 41.0 61.6

Table 4: Performance of our system on MedLine
and DrugBank corpora of SemEval-2013 Task 9
(Segura-Bedmar et al., 2013), compared with the
best and worst system in that shared task.

correct relations between ‘bronchoalveolar lavage
fluid’ and five entities in NP1. This is a represen-
tative example showing the advantage of our PAS
patterns in extracting candidate relations.

4.2 Performance on Predefined Relations
We also conducted experiments to check if our
PAS patterns could cover other predefined rela-
tions, including Protein-Protein Interaction (PPI)
and Drug-Drug Interaction (DDI). Regarding PPI,
we applied our patterns to AIMed, BioInfer and
LLL (Airola et al., 2008; Pyysalo et al., 2008).
The available gold standard entities in these cor-
pora were used instead of MetaMap output. Our
experimental results and the results of some ma-
chine learning-based systems on PPI are shown in
Table 3. It should be noted that these systems were
evaluated by using 10-fold cross validation or us-
ing the test set; while our method is rule-based and
thus we simply applied our patterns to the whole
labeled corpora.

We conducted the same experiment for DDI on
the SemEval-2013 task 9 corpus (Segura-Bedmar
et al., 2013) and report the results in Table 4.

Results in Table 3 and Table 4 show that al-
though our PAS patterns are very simple, their per-
formance is competitive with other machine learn-
ing methods on both PPI and DDI. In some cases,
our method even outperforms the other ones such
as PPI on AIMed corpus and DDI on MedLine

Rank Semantic Relation CountEntity 1 Entity 2
1 aapp aapp 2,006,301
2 cell aapp 1,770,561
3 bpoc aapp 1,046,523
4 gngm aapp 1,008,017
5 dsyn dsyn 909,195
6 aapp dsyn 869,143
7 aapp bacs 680,349
8 bpoc mamm 676,325
9 lbpr aapp 650,571

10 bpoc dsyn 626,644

Table 5: The ten most frequent types of semantic
relations found in the whole MEDLINE.

corpus in recall.

4.3 Extracting Semantic Relations in
MEDLINE

We have applied our system to the whole MED-
LINE3 to extract semantic relations and calculated
their frequencies to see which relations are com-
mon in this corpus. The statistical results in Table
5 show that the most common semantic relation in
MEDLINE is the relation between ‘Amino Acid,
Peptide or Protein’ (aapp) entities4. This explains
why researchers in BioNLP have been focusing
on protein-protein interaction. We can also see
that ‘Amino Acid, Peptide or Protein’ entities con-
tribute in 7 over 10 most popular relations, which
shows their important role in the biomedical do-
main.

5 Conclusion

In this work, we have developed an Open IE sys-
tem for biomedical literature by employing six
PAS patterns to extract the candidates of possi-
ble biomedical facts. The system extracted 438
relations from our test set and 50% of those were
correct. Compared with ReVerb and OLLIE, our
patterns have presented better performance in ex-
tracting relevant NP pairs. The experimental re-
sults show that our patterns are effective on both
general and specific relations. The statistical anal-
ysis on the result of the whole MEDLINE provides
support for the intuition that the most common
semantic relations are the ones between ‘Amino
Acid, Peptide and Protein’ entities.

3The version used in this paper is the 2012 MED-
LINE/PubMed baseline database.

4The semantic types of entities in Table 5 are in short
form for our convenience, for their full form, please
refer to http://semanticnetwork.nlm.nih.gov/
Download/RelationalFiles/SRDEF
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Abstract

As an effort to improve the interoperabil-
ity of literature annotation, the paper sug-
gests to share the reference texts whereon
annotations produced by different projects
may be aligned. PubAnnotation is a web-
based public system implemented to sup-
port the idea. Its two key features, (1) ref-
erence text provision and (2) annotation
alignment, are presented in the paper.

1 Introduction

Corpus annotation is considered indispensable for
the development of text mining technology. In the
case of the area of life sciences, due to the rapid
increasing rate of publications, the need for text
mining is very high. In the area, thanks to the
existence of the extensive databases of literature,
e.g., PubMed1 and PubMed Central (PMC)2, an-
notation efforts have been largely made to the pub-
licly accessible portion of literature, e.g., PubMed
abstracts and the Open Access subset of PMC
(OAPMC)3.

Given them, in the area, many literature annota-
tion projects typically involve following steps:

Step 1 : To take a sub-collection from the two
databases, PubMed and/or PMC.

Step 2 : To extract texts from each article,
preprocessing them for annotation.

Step 3 : To annotate the pre-processed texts

At Step 1, while many projects are interested in
annotating only a sub-collection of the available
articles from the two databases (Kim et al., 2008;
Verspoor et al., 2012), recent progress of technol-
ogy has enabled the production of annotation in

1http://www.ncbi.nlm.nih.gov/pubmed
2http://www.ncbi.nlm.nih.gov/pmc/
3http://www.ncbi.nlm.nih.gov/pmc/

tools/openftlist/

a large scale, and there are a number of projects
producing annotations to the entire PubMed and
OAPMC (Björne et al., 2010; Wei et al., 2012;
Rindflesch and Fiszman, 2003).

Given the high productivity of annotation in
the area, it is generally recognized that interop-
erability of the annotations produced by different
projects is important to leverage the progress of
the community utilizing the resources. Standard-
ization of the format or representation is one sort
of such efforts, e.g., Linguistic Annotation Frame-
work (LAF) (Ide and Romary, 2004), Open Lin-
guistics4, and BioC5. The work presented in this
paper addresses another issue with regard to inter-
operability of annotation:sharing reference texts
and alignment of annotation.

2 Proposal

A text is often thought as a sequence of charac-
ters, and an annotation is regarded as identifying
a specific part (span) of the sequence, attaching a
piece of information to it. It is, in fact, very simi-
lar to genome annotation: in both cases, a span to
be annotated is specified by its begin and the end
positions on its base sequence.

A bit more general case can be found in the ge-
ographic map annotation, e.g.,Google map, where
the target of annotation is a 2-dimensional “grid”
space, which may be filled with geographical data,
e.g., elevation, at its outset. Then, the map may
be annotated with various types of information,
e.g., restaurants. Note that, however, for the ge-
ographic map annotation to work properly, the co-
ordinate system to facilitate the positioning in the
grid space, e.g.,latitude andlongitude, needs to be
standardized and shared by the users.

In the case of genome annotation, it is
genome sequences whereon annotation instances

4http://linguistics.okfn.org/
5http://www.ncbi.nlm.nih.gov/

CBBresearch/Dogan/BioC/

57
Proceedings of the 5th International Symposium on Languages in Biology and Medicine (LBM 2013)



Figure 1: Tnf gene entry in theMGI (Mouse Genome Informatics Genome) database. The location of
the gene,Chr17:35,199,381-35,202,007, and the specification of the reference sequence,GRCm38, is
underlined red.

are based. Thus, it can be said that the genome
sequence defines a coordinate system for genome
annotation. Figure 1 shows an example of genome
annotation which is taken from theMGI (Mouse
Genome Informatics) database6. Roughly speak-
ing, it shows that the location,35,199,381 -
35,202,007, on the 17’th chromosome of mouse
is identified as the coding region of the pro-
tein, Tumor necrosis factor (which corresponds
to UniProt:P06804). It is a part of the VEGA
annotation which is made toGRCm38, a refer-
ence genome sequence of mouse provided by the
Genome Reference Consortium (GRC)7. In the
case, it can be said that the reference sequence de-
fines the coordinate system for the specification of
the gene coding region, and that without it the re-
gion specification loses its meaning.

The same may be applied to the literature anno-
tation. Imagine that we want exchange a piece of
annotation like as below:

([PMC:2626671, sec:1, span:14-22],
UniProt:P10820)

It may mean that “the span between the 14’th and
22’nd characters of the section 1 of the literature,
PMC:2626671, denotates UniProt:P10820 (which
is the protein, Perforin-1)”. Note that the format of
annotation is out of scope of this paper, and an an-

6http://www.informatics.jax.org/
7http://www.ncbi.nlm.nih.gov/projects/

genome/assembly/grc/

notation is simply represented asn-tuple through-
out this paper. The piece of annotation, however,
does not make a concrete sense without specify-
ing the base text whereon the position specifica-
tion holds its meaning.

Currently, the base texts are usually prepared by
individual projects, making the position specifica-
tion meaningful only when the project is specified:
(Project:A,
[PMC:2626671, sec:1, span:14-22],
UniProt:P10820)

Imagine that we know another piece of annotation
produced by another project,B:
(Project:B,
[PMC:2626671, sec:1, span:14-22],
NP)

At a glance, it looks like the two projects,A and
B, annotate the same span with the different la-
bels,UniProt:P10820 andNP, respectively. How-
ever, there is no evidence that the two spans are
the same, as the base texts prepared by the two
projects may be, at a high chance, different from
each other. For example, one may include only
ASCII characters, while the other includesUTF-
8 characters, and/or one may have inserted space
characters for tokenization during preprocessing
while the other may not. In such a situation, there
is no direct way to compare or aggregate the anno-
tations produced by different projects.

To remedy the situation, we propose to share the
reference texts across annotation projects:

58
Proceedings of the 5th International Symposium on Languages in Biology and Medicine (LBM 2013)



Organism Literature
Genome sequencingText sequencing
Sequence alignmentText alignment
Genome annotation Text annotation

Table 1: Genome annotation vs. Text annotation

(Project:A,
[PMC:2626671, sec:0, span:17-25, ref:R],
UniProt:P10820)

(Project:B,
[PMC:2626671, sec:0, span:17-25, ref:R],
NP)

In the example, the two projects,A andB, annotate
the same reference text, R, instead of producing
the base texts themselves. Now, it is evident that
the two pieces of annotation is made to the same
span, i.e., the two projects share the same coordi-
nate system that is defined by the reference texts.
The two pieces of annotation are now immediately
comparable and aggregatable: while the projectA
annotates the specific span as a protein, the project
B annotates the same span as a noun phrase (NP).

3 PubAnnotation

To realize the scenario discussed in the previous
section, PubAnnotation implements several func-
tions as explained in the following sections.

3.1 Reference texts

In section 1, three typical steps for literature an-
notation in the area of life sciences is discussed.
Among them, Step 2 is the main concern of this
work, as the base texts of an annotation project
is determined at the step. We call the process of
producing texts from an articletext sequencing, as
it corresponds to the genome sequencing step of
genome projects. Table 1 shows some correspond-
ing steps of literature and genome annotation.

Often, text sequencing is thought as a trivial
task, and its importance is neglected. It may be
trivial if the target article is simple, e.g. PubMed
abstracts. However, when it comes to full articles,
e.g. PMC articles, it is not, as a full article often
involves lots of non-linear structures, e.g., figures
and tables. It is also not straightforward how to
divide a full article into reasonably small parts for
annotation, e.g., chapters, sections, or paragraphs.
The choice of character encoding, e.g.,ASCII or
UTF-8, also has to be made at the step. Consid-
ering all the aspects, the text sequencing process
needs to be fully automated forreproducibility.

PubAnnotation provides its own implementa-
tion of text sequencers for PubMed and PMC
articles, which is freely available to the pub-
lic, through persistent URLs. For example,
the URL, http://pubannotation.org/
pmcdocs/2626671/divs/1, refers to the text
of the PMC document, PMC:2626671, in the sec-
ond division8. As the texts are outputs of Pub-
Annotation sequencers, any piece of annotation to
them needs to specify it to hold its meaning:

(Project:A,
[PMC:2626671, sec:0, span:17-25,

ref:PubAnnotation],
UniProt:P10820).

As the PubAnnotation texts are universally acces-
sible over the Web, the above piece of annotation
remain valid as long as the Web is reachable.

The implementation detail of the text se-
quencers is out of scope of this paper. Instead,
this paper focuses on how the annotations can be
maintained valid while admitting the sequencers
may be evolved over time.

3.2 Text conversion and alignment

While we suggest to share the base texts (so called
reference texts) for annotation, we also admit that
the base texts may be changed when necessary.
For example, the output of the PubAnnotation se-
quencers includes Unicode characters to retain the
content in the original article as much as pos-
sible. However, many annotation projects con-
vert Unicode characters to equivalentASCII se-
quences. One strong motivation for the conver-
sion is that most NLP (natural language process-
ing) tools, e.g., taggers and parsers, cannot prop-
erly handle Unicode characters. To address the
need for text conversion, PubAnnotation features
automatic text conversions and alignments.

Figure 2 illustrates an example. while the orig-
inal text includes a Greek letter,β, one may want
to convert it to an equivalent ASCII sequence,
beta, to apply NLP tools, which may result in
variation of the base texts. However, the anno-
tation instances made to the varied texts have to
be re-aligned to the reference texts to interoper-
ability. PubAnnotation implements an automatic
alignment of annotation using the Hunt-McIlroy’s
longest common subsequence (LCS) algorithm
(Hunt and McIlroy, 1976) together with general-
ized LCS algorithm (Kim, 2013).

80-oriented index
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Figure 2: Illustration of annotation alignment to the reference text. The upper box represents the refer-
ence text provided by PubAnnotation. The lower box represents a pieceof text taken by an annotation
project. Note that the text is slightly different, e.g.,β vs. beta, due to a preprocessing. The blue baloons
illustrate that the two annotation instances, (107-113, Protein) and (208-213, Protein), are aligned to the
reference text, by PubAnnotation.

Figure 3: Screen-shot ofPubAnnotation, listing all
the annotation sets stored in it.

The function of automatic annotation alignment
also enables seamless maintenance of annotation
over the evolution or revision or sequencers, as
discussed in the previous section.

4 Results

The PubAnnotation system is developed to pro-
vide a shareable repository of reference texts of
life science literature and annotations to them. At
the time of writing, the alpha-service is avail-
able at http://pubannotation.org. Figure 3 shows
a screen-shot ofPubAnnotation, listing the anno-
tation projects stored on it. Note that all the an-
notations stored in PubAnnotation are aligned to
the reference texts of PubAnnotation, and com-
parison of the annotations or collective analysis
across them is immediately possible. Figure 4
shows all the annotation sets made to the docu-
ment,PubMed:8493578. PubAnnotation is devel-
oped as an open-source project and downloadable

Figure 4: Screen-shot ofPubAnnotation, list-
ing the annotation sets made to the document:
PubMed:8493578.

under MIT license,

5 Conclusion

As an effort to improve the interoperability of lit-
erature annotation, the paper suggests to share the
reference texts whereon annotations produced by
different projects may be aligned. PubAnnotation
is a public, open-sourced, repository system of ref-
erence texts and annotations, combined with web
services which enable efficient maintenance of the
annotations in various situation, e.g., text conver-
sion and evolution of sequencers. We expect it to
contribute to the reduction of the cost of the com-
munity sharing annotations.
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Abstract

Automatic methods for vocabulary
expansion are valuable in supporting the
development of terminological resources.
Here, we evaluate two methods based
on distributional semantics for extracting
terms that belong to a certain semantic
category. In a list of 1000 terms extracted
from a corpus of Swedish medical text,
the best method obtains a recall of 0.53
and 0.88, respectively, for identifying 90
terms that are known to belong to the
semantic categories Medical Finding and
Pharmaceutical Drug.

1 Introduction

High-coverage terminologies are important for
medical text processing systems, such as named
entity recognizers and information extractors.
Manual terminology development is, however,
expensive and time-consuming; it also runs
the risk of resulting in insufficiently extensive
terminologies and a subsequent negative impact
on the recall of systems in which these are used.
Methods that can support this process in various
ways are thus very valuable.

Given the availability of a large corpus, methods
based on distributional semantics – i.e. methods
that exploit term co-occurrence patterns – make
it possible to determine, in an unsupervised fash-
ion, which terms are semantically related and to
what extent. Several studies have demonstrated
the potential of these methods in the (bio)medical
domain (Cohen and Widdows, 2009), also with
clinical corpora for the purpose of semi-automatic
medical vocabulary development (Henriksson et
al., 2012) and query expansion (Zeng et al., 2012).

Previous applications of distributional seman-
tics for terminology development support and sim-
ilar tasks have either focused on the extraction of

very closely related terms, e.g. synonyms (Lan-
dauer and Dumais, 1997; Henriksson et al., 2013),
or used features derived from such methods to
train named entity recognition systems (Sahlgren
and Cöster, 2004; Jonnalagadda et al., 2012).
Here, we aim to study more closely the potential of
using distributional semantics to extract terms that
belong to a specific semantic category of medical
terms, which will hopefully contribute to the areas
of semi-automatic terminology development and
unsupervised feature extraction.

2 Background

Methods for automatic vocabulary extraction can
be divided into two main types, depending on
whether or not there already exists a terminology
(or a set of seed words belonging to predefined se-
mantic categories). With the availability of a ter-
minology in the target domain, as is the case in
this study, vocabulary extraction can be seen as
a classification task, determining whether an un-
known word belongs to a certain semantic cate-
gory. If there does not yet exist a suitable re-
source, however, a clustering approach needs to
be taken, where clusters constitute candidates for
semantic categories. In either case, the vocabulary
extraction is based on finding patterns of contexts
in which words typically occur (Biemann, 2005).

Semantic (word) spaces, derived from a cor-
pus, represent such context patterns in the form of
word co-occurrence information. This represen-
tation has been used both for creating clusters of
semantically related words (Song et al., 2007) and
for determining whether unknown words belong to
predefined semantic categories (Widdows, 2003;
Curran, 2005). In this study, we use a computa-
tionally light-weight version of the semantic space
representation called random indexing (Kanerva et
al., 2000; Karlgren and Sahlgren, 2001; Sahlgren,
2005). Instead of reducing the dimensionality of
a word-by-word (or word-by-context) matrix to
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make it computationally tractable (which is the ap-
proach taken for creating many other types of se-
mantic spaces), a matrix with a smaller dimension-
ality is created from the beginning. Each word in
the corpus is assigned a unique representation in
the form of an index vector with a dimensional-
ity that is much smaller than the number of unique
terms in the corpus. The near-orthogonal index
vectors are created by randomly generating very
sparse vectors, in which most of the elements are
set to 0, while a few (1–2%), randomly selected,
elements are set to either +1 or −1. Each word
is also assigned a context vector with the same di-
mensionality as the index vector, in which all ele-
ments are initially set to 0. For every occurrence of
a word in the corpus, its context vector is updated
by adding the index vectors of the words in the
context window (the surrounding words). Differ-
ent semantic relations can be modelled by varying
the size of the context window (Sahlgren, 2006).
The resulting semantic space consists of the con-
text vectors, between which, e.g., the cosine simi-
larity can be computed to determine the semantic
distance between words.

3 Materials and Methods

The proposed approach essentially requires two
resources: a large corpus of medical text and a
number of seed terms that belong to the seman-
tic category of interest. To allow the method(s) to
be evaluated automatically, additional terms that
are known to belong to the same semantic cate-
gory are also needed. Here, a corpus of Swedish
medical text and subsets of the Swedish version of
the medical vocabulary MeSH were used.

3.1 Semantic Spaces of Medical Text

Semantic spaces were induced from a Swedish
medical corpus: Läkartidningen, which is the
Journal of the Swedish Medical Association
(Kokkinakis, 2012) and contains articles on, for
instance, new scientific findings in medicine, phar-
maceutical studies and health-economic evalua-
tions. Editions from the years 1996–2005 were
used, as these have been made available for re-
search, albeit with the sentences given in a random
order. The corpus was preprocessed by (white-
space) tokenising and lower-casing the text. Since
the sentence order is scrambled, a document break
was inserted between sentences to ensure that co-
occurrence information is not collected across sen-

tences in the construction of the semantic spaces.
The corpus was not lemmatised, as inflected forms
of medical terms may also be relevant candidates
for vocabulary expansion. The corpus contains
21 447 900 tokens and 444 601 unique terms.

Random indexing was applied to induce 1000-
dimensional semantic spaces1 from variants of
this corpus. The semantic spaces were evalu-
ated in two steps: (1) in a development phase,
where context window size was optimised sep-
arately for each of the two semantic categories
(Medical Finding and Pharmaceutical Drug) and
for each of the two proposed methods, and (2) in a
final evaluation phase, where the best-performing
semantic spaces, in terms of recall, were evalu-
ated on unseen data. The context window sizes
1+1, 2+2, 4+4 and 50+50 were evaluated in the
development phase. The 50+50 window size is,
in effect, a sentence-level context definition since
the sentence delimiters ensure that context infor-
mation from adjacent sentences is ignored.

3.2 Semantic Term Extraction

Two computationally efficient methods for vo-
cabulary expansion using random indexing were
devised and evaluated: Term Replacement
(TermRep) and Cosine Addition (CosAdd).

In the first method, TermRep, the corpus was
modified before the semantic spaces were created.
All occurrences of a set of seed terms that belong
to a given semantic category were replaced by a
common string denoting that category. This can
be seen as an aggressive form of term normalisa-
tion and entails that each semantic category is as-
signed a single context vector, which is populated
with the index vectors of terms that co-occur with
all lexical instantiations of that semantic category.
The string that represents the semantic category of
interest was then given as a query term to the se-
mantic space, resulting in a ranked list of distribu-
tionally similar terms, presumably some of which
belong to the same semantic category.

In the second method, CosAdd, the semantic
spaces were created with the unmodified corpus.
Each term in the set of seed terms was instead
used as a query term, resulting in one ranked list
per seed term, containing the cosine similarity be-
tween this seed term and every other word in the

110 non-zero elements (i.e., 1%) were assigned to the in-
dex vectors. When populating the context vectors, increas-
ingly less weight was assigned to index vectors as the dis-
tance from the target term increases.

64
Proceedings of the 5th International Symposium on Languages in Biology and Medicine (LBM 2013)



corpus. The ranked lists of the seed terms were
then merged into a single ranked list per semantic
category. The merge was performed by summing
the cosine similarity scores.

A certain number of observations of a term is re-
quired for its context vector to be accurately posi-
tioned. Words occurring fewer than 50 times were
therefore not included as seed terms; they were
also excluded from the lists of candidate terms.

3.3 Medical Terminology and Evaluation

The medical terminology was here employed for
two purposes: (1) as a set of seed terms for a given
semantic category and (2) as a reference standard
for evaluating the two proposed methods.

The Swedish version of MeSH2 (Karolinska
Institutet, 2012), a controlled vocabulary for in-
dexing life science literature, was here used for
these purposes. For the semantic category Medical
Finding, terms that belong to the Swedish MeSH
categories Disease or syndrome and Sign or symp-
tom3 were used; for the semantic category Phar-
maceutical Drug, the MeSH category Pharmaco-
logic substance was used.

MeSH terms occurring fewer than 50 times
were excluded as seed terms (as mentioned
above), as well as reference standard terms. Multi-
word terms were also excluded, as current models
of distributional semantics perform better on uni-
gram terms (Henriksson et al., 2013). When rare
and multiword terms had been removed, 309 terms
that belong to Medical Finding and 181 terms that
belong to Pharmaceutical Drug remained. In or-
der to enable a fairer comparison between the two
semantic categories, 181 Medical Finding terms
– identical to the number of Pharmaceutical Drug
terms – were randomly selected.

The terms used in the evaluation for each se-
mantic category were divided into two stratified,
equally large groups, a development set and an
evaluation set, in which the strata consisted of
terms with similar frequencies in the corpus. In
the development phase, the terms in the develop-
ment set were used for optimising context window
size. In the evaluation phase, all terms were used:
the terms in the development set were treated as
seed terms, which, in a real-world scenario, would
be known and already included in the terminology;

2MEdical Subject Headings: http://www.nlm.
nih.gov/mesh

3As there is a rather fine distinction between these two
subcategories, they were merged into a single category.

the terms in the evaluation set were ones that, in a
real-world scenario, we would like to add to the
terminology.

The performance using different window sizes
was measured using 10-fold cross-validation on
the data in the development set. The 91 terms that
belong to Medical Finding and the 91 terms that
belong to Pharmaceutical Drug were divided into
ten folds. That is, for each fold, approximately
82 terms were used as query terms – or, in the
TermRep case, replaced by a common identifier in
the corpus – and approximately 9 terms were ex-
pected to be retrieved, effectively making up the
reference standard. Recall was measured as the
proportion of expected terms that were found in
a list of retrieved terms. Recall at different cut-
off values (from 50 to 1000, with a step size of
50) were calculated. The semantic spaces with
the highest average recall values were selected and
used in the evaluation phase. This means that the
semantic spaces were not optimised for a specific
cut-off value, rendering the cut-off value a flexible
parameter in the final evaluation.

In the evaluation phase, the primary evaluation
was conducted in the form of a fully automatic
evaluation of recall against the evaluation set. To
determine to what extent retrieved terms belong to
the expected semantic category, despite not being
present in the reference standard, a semi-automatic
evaluation of precision among the 500 top-ranked
terms was also performed. Retrieved terms classi-
fied as Finding or Drug in MeSH or FASS (2012)
were automatically classified as correct or incor-
rect (assuming that a known Finding can never be
a Drug and vice versa). The remaining terms were
manually classified by a single annotator as be-
longing to the category or not.

4 Results

Averaging the recall measurements for the 20 cut-
off values yielded the results shown in Table 1.
There were no large differences between window
sizes, but the best recall (for both methods) was
obtained with a context window of 2+2 for Medi-
cal Finding and 1+1 for Pharmaceutical Drug. Se-
mantic spaces induced with these window sizes
were therefore used in the final evaluation.

The ability of the two methods to extract the ex-
pected terms in the evaluation set is shown in Fig-
ure 1. For Medical Finding there was no large dif-
ference between the two methods, whereas Cosine
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Window Size 1+1 2+2 4+4 50+50
Medical Finding

CosAdd 0.372 0.389 0.384 0.382
TermRep 0.357 0.368 0.361 0.360

Pharmaceutical Drug
CosAdd 0.567 0.516 0.502 0.501
TermRep 0.409 0.386 0.375 0.371

Table 1: Average recall values over 20 different
cut-offs (top 50 – top 1000) on development data.
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Figure 1: Recall values for different cut-offs

Addition outperformed Terminology Replacement
for Pharmaceutical Drug. Both methods obtained
better recall for extracting Drug terms than Find-
ing terms. The overlap of retrieved terms for the
two methods was 83% for Finding and 76% for
Drug (top 1000). For the CosAdd method, pre-
cision was also evaluated, with better results for
Finding than for Drug (0.80 vs. 0.64 for top 50
and 0.68 vs. 0.47 for top 100, Figure 2).

5 Discussion

Two computationally light-weight methods for au-
tomatic vocabulary expansion have been studied.
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Figure 2: Precision (partially based on manual
classification) vs. recall (automatically measured
against the reference standard), cut-off 50–500.

Seed terms were modelled as if they would form
two separate clusters in the semantic space: one
for Medical Finding and one for Pharmaceutical
Drug. When applying the replacement method, we
are in effect searching for new words that are close
to a weighted centroid of the cluster. The weight-
ing emerges from the fact that the effect of each
seed term on the resulting centroid context vec-
tor is directly proportional to the frequency of the
seed term in the corpus. This makes the method
vulnerable to frequent seed terms that are atyp-
ical for the semantic category, which might ex-
plain the lower results with this method for Phar-
maceutical Drug, as, for instance, alcohol was the
second most frequent seed term. With the addi-
tion method, on the other hand, each seed term
is given equal weight, and new words are deemed
equally typical to the semantic category irrespec-
tive of the frequency of the seed term to which they
are close. This means that employing a low fre-
quency threshold for which seed terms to include
might drastically lower the results, as there is a
weak statistical foundation for the position of the
context vectors of the many low-frequent terms.

6 Conclusion and Future Work

The best performing method was able to extract
53% of the 90 expected Medical Findings and 88%
of the 90 expected Pharmaceutical Drugs among
the top 1000 retrieved terms, showing its poten-
tial as a useful component in a semi-automatic vo-
cabulary expansion process. Future work should,
however, include a comparison between the ap-
proaches evaluated here and previous approaches,
for their ability to retrieve expected terms and also
for their computational efficiency.

Moreover, modelling a MeSH category as one
cluster in the created semantic space is most likely
an over-simplification. There might be a number
of sub-clusters within each of the two categories
Finding and Drug – sub-clusters that are posi-
tioned at large distances from each other in the se-
mantic space. Words not part of these sub-clusters,
but close to two or more clusters, will then receive
a high ranking with the methods applied here, even
though they ought to be ranked lower than words
close to the centroids of the sub-clusters. As the
next step, we will therefore attempt to cluster the
seed terms into sub-clusters and apply the distance
measures of this study to rank the similarity of un-
known words to these sub-clusters.
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Abstract

This work tackles Electronic Health
Record (EHR) classification according to
their Diagnostic Terms (DTs) following
the standard International Classification
of Diseases-Clinical Modification (ICD-9-
CM). To do so, we explore text mining
relying on a wide variety of data from
both standard catalogues, such as the ICD-
9-CM and SNOMED-CT; and, what it
was proven even more effective, real data
sources, such as EHRs.

The models we put forward to deal with
this problem are Finite-State Transducers
(FSTs). The aim behind FSTs would be
not only to accept exact terms in the ICD-
9-CM but also alternative variants. To be
precise, a series of FSTs were defined to
carry out a soft-matching process between
DTs written in natural language and those
in the standard form as in the ICD-9-CM
catalogue.

1 Introduction

The Clinical Documentation Service of the
Galdakao-Usansolo Hospital (a hospital attached
to the Spanish Ministry of Health, Social Ser-
vices and Equality) is interested on automatis-
ing the classification of Electronic Health Records
(EHRs). EHRs include several fields such as: a
description of the patient’s details, antecedents,
procedures and methods of administration of
medicines, and Diagnostic Terms (DTs). It is the
DTs that serve as the classification key to clas-
sify EHRs according to the World Health Organi-
sation’s 9th Revision of the International Classifi-
cation of Diseases - Clinical Modification (ICD-9-
CM)1. The goal of this work is to develop a system

1The reader might be aware of the fact that for English
other codification systems (such as ICD-10) are also reported

to automatically classify DTs in an attempt to alle-
viate the work load by the Clinical Documentation
Service but never at the expense of precision. This
task presents the following challenges:

1. Natural language in EHRs vs. medical jargon
in ICD-9-CM

2. Large-scale classification problem: including
more than 14× 103 different classes

3. Working towards a 100% precision

1.1 Related work

A large number of sophisticated machine learning
algorithms have been applied to the task of DT
classification. Ferrao et al. (2012) used a com-
mercial system based on either Naive-Bayes or de-
cision trees to tackle multi-label classification of
EHRs restricted to the Internal Medicine depart-
ment.

The top systems in the 2007 Computational
Medicine Challenge have benefited from incor-
porating domain knowledge of free-text clinical
notes, such as negation, synonymy and hyper-
onymy, either as hand-crafted rules in a symbolic
approach, or as carefully engineered features in
a machine learning component: (Goldstein et al.,
2007; Crammer et al., 2007; Aronson et al., 2007;
Patrick et al., 2007). Yet, this shared task in-
volved the assignment of ICD-codes to radiology
reports written in English from a reduced set of 45
codes (Pestian et al., 2007). By contrast, we focus
on the entire scope of the ICD-9-CM catalogue.

Most of the systems described in the literature
were developed for English. Looking at other lan-
guages, Metais et al. (2007) reported a system to
classify medical reports in French.

in the literature, nevertheless, it is the ICD-9-CM the one be-
ing currently used by the Spanish Health System even though
it is foreseen to move to ICD-10 in the near future.
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2 Methods: Finite-State Transducers

Finite-State Automata (FSA) serve to the pur-
pose of recognising regular grammars (Chomsky,
1959). A grammar is used to either generate or
parse the strings accepted in the language recog-
nised by the FSA. In our medical domain the DTs
in the ICD-9-CM catalogue represent the set of
acceptable strings within a formal language with
a particular syntax. Thus, inferring the grammar
underlying the DT domain would help to assess
whether a given string could be considered or not
appropriately expressed in that language.

Finite-State Transducers (FSTs) are an exten-
sion of FSAs that encompasses two languages: in-
put and output. FSTs serve to analyse an input
string and associate an output string (in case that
the input is acceptable in the source language).
That is, FSTs serve to map from one language to
the other. The nature of the FSTs does not allow
to accept any string out of the language, and this
property strives towards a high precision.

2.1 Implementation
In brief, the system is designed as a composition
of three FSTs: lexicon, normalisation and gener-
ation. The FSTs were next integrated on a pri-
ority union basis. This operation allows a wide
search while it tries to stick as possible to the
input. Besides, it rejects some strings, meaning
that it reveals ill-formed DTs. All the FSTs as
well as their operations were implemented through
Foma (Hulden, 2009). Foma is a freely available
toolkit that allows to build finite-state transduc-
ers and also includes efficient parsing functions.
Besides, it supports imports from, and exports to,
other toolkits, such as Xerox’s XFST (Beesley and
Karttunen, 2003), AT&T (Mohri et al., 2003) and
OpenFST (Riley et al., 2009). Next we provide
some details of each FST:

1. FST-Lexicon: it compiles the reference col-
lection of allowed (DT, ICD-code) pairs, that
is, the lexicon of the application. This FST is
automatically built by Foma from the set of
pairs allowed. The data-sets involved in the
lexical model came from two sources:

• ICD-9-CM: consists of more than
14, 435 different (DT, ICD-code) pairs
not restricted to a single clinical domain.
• EHRs in Spanish: a set of more than

28,000 (DT, ICD-code) pairs with DTs

written by doctors and coded by experts
in EHRs that allows supervised classifi-
cation.

2. FST-Normalisation: it carries out elemen-
tary pre-processing operations. The goal is to
get all the inputs re-cased, to get rid of writ-
ten accents and other punctuation marks that
are considered as noisy. This FST was built
from rules and compiled as an FST by Foma.
An example of the rules underlying this FST
is given in Figure 1a.

3. FST-Generation: it allows to generalise the
reference lexicon by means of synonyms,
acronyms, etc. As a result, it allows to gen-
erate new alternatives for the DTs. This
FSTs implements rules to check punctuation
marks, to allow number variation (to create
singular and plural forms for a given DT in
the reference), the omission and equivalence
of some prepositions, either expand abbre-
viations, synonyms of the reference accord-
ing to SNOMED-CT, optional replacement in
a given context, composition, union, projec-
tion,etc. For exemplification purposes, some
of these rules are shown in a very simplified
manner in Figure 1b.

Let us show in an example the procedure by
which the system makes it possible the automatic
assignment of the correct ICD-code, 185, to the
DT “Ca. prostata” used in an EHR. In the ICD-
9-CM the term encoded with 185 is “Neoplasia
maligna de la próstata”. Hence, an exact lookup
operation would have been unproductive. Never-
theless, the soft-matching operations implemented
through the proposed FST are able to find the re-
quired term, and accordingly, provide the corre-
sponding ICD-code. As a first step, both terms
(the DT and the one in the ICD list) are nor-
malised by the FST-Normalisation that was de-
fined from the set of rules denoted as Accents
and Low2Upp (see Figure 1a). The normalisa-
tion step yields “CA. PROSTATA” and “NEOPLA-
SIA MALIGNA DE LA PROSTATA”. After that, the
FST-Generation proceeds with the generation of
several alternatives: the AltCa rule enables the
equivalence of several alternatives, such as “CA.”
and “NEOPLASIA MALIGNA”. Hence, this en-
ables to parse “CA. PROSTATA” as “NEOPLA-
SIA MALIGNA PROSTATA”. Finally, the Preps
rule adds the prepositions, leading to the standard
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Accents [á -> a].o.[é -> e].o. ... .o. [ú -> u];
Low2Upp [a -> A].o.[b -> B] .o. ... .o. [z -> Z];

.

.

.
.
.
.

(a) Normalisation

Pl I [S|ES] (->) "" || Upper [.#. | "." | ","];
Pl [..] (->) ([S|ES]) || Upper [.#. | "." ];
R4 IV (->) "4" || " " [.#.|"."|" "];
Preps [..] (->) [de |del| de la |con |por ]||" " ;
AltCa [NEOPLASIA MALIGNA|CA.|ADENOCARCINOMA|...];
EquivCa [AltCa:AltCa];

.

.

.
.
.
.

(b) Generation

Figure 1: Rules underlying the FSTs involved: FST-Normalisation and FST-generation

term in the ICD list “NEOPLASIA MALIGNA DE

LA PROSTATA” from the DT in the EHR “CA.
PROSTATA”.

The FSTs were arranged with a priority union
in such a way that each FST contributed with ad-
ditional capabilities to the previous one. The trans-
ducers were composed in such a way that the most
simple transducer was looked-up first and the one
allowing the higher variability last. That is, a pri-
ority union is applied to compose the different
transducers.

3 Experimental results

For this task it is preferred to get accurate results
with high precision even at the expense of low cov-
erage. Hence, the system allows rejections when-
ever the input DT does not match any of the al-
ternatives allowed in the language accepted by the
FST. That is, all the instances that did not soft-
match a DT in the FST are left unclassified and
this is why we are not referring to our system as a
fully automatic classification system but as a clas-
sification support system, instead.

Accordingly, for a given DT there are three pos-
sible outcomes:

Reject: the DT was not assigned any code by the
system because the input DT did not soft-
match any of the accepted alternatives in the
FST. That is, there was not any path in the
transducer accepting the source string.

Miss: the DT was assigned a code by the sys-
tem that did not match the manually assigned
ICD-code.

Hit: the DT was assigned a code that matched the
one in the reference.

The performance of the FST, shown in Table 1,
was assessed using a 5-fold cross validation on the
EHR set of 28,000 (DT, ICD-code) pairs, while
including also the ICD-9-CM set to feed the FST-
Lexicon.

In order to make clear the relevance of both
the nature of the seed lexicon and the genera-
tion operation, we made a baseline experiment:
the lexicon consisted only of the standard ICD-9-
CM set of pairs and while normalisation operation
was allowed, we did not allow for any generation.
Through this baseline we meant to measure the
number of DTs written by doctors nearly as in the
standard ICD-9-CM. Although the ICD-9-CM is
composed of 14,435 different pairs, the number of
hits achieved was 7.1%. Moreover, allowing next
the generation operation on the same lexicon, the
hits represent the 8.1%, the rejections the 89.0%
and the misses the 2.9%. Comparing this baseline
with the results in Table 1, the conclusion drawn
is that the aid of real EHRs seems to be of much
benefit in what comes to feeding the lexicon of the
FST.

Evaluation Rejections Misses Hits
automatic 12.0% 1.2% 86.8%

Table 1: Performance of the FST.

3.1 Impact of real data on performance
Having incorporated EHRs to the allowed lexicon
provided excellent results with respect to the base-
line. Hence, it seemed of interest to quantitatively
assess the impact of including more and more in-
stances from EHRs, which is, precisely, one of the
hubs of this paper.

The aim is to learn a regression model that
would predict the effect of adding further data on
the coverage. To do so, more and more instances
from EHRs were progressively added to the lex-
icon and the improvements in terms of coverage
were evaluated. A polynomial regression on the
evaluation data was carried out showing the fol-
lowing approximated relation:

y ≈ f(x) = a2 · x2 + a1 · x+ a0 (1)

being:
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x the size of the (DT, ICD-code) pairs from
EHRs used to feed the FST-Lexicon, pre-
sented in logarithmic scale.

y the number of rejections provided by the FST,
expressed as a percentage.

to be precise:

x = ln(|C|) (2)

y =
|R| ∗ 100
|R| (3)

On this basis, a quadratic polynomial predictive
model presented in eq. (1) was derived with the
following coefficients:

a2 = 1.57 a1 = −37.5 a0 = 226 (4)

These results, represented in Figure 2, show that
even a small corpus would represent a leverage to
gain on coverage for similar tasks.
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Figure 2: The number of rejections as a percent-
age (in the ordinate) with respect to the size of
the corpus in logarithmic scale (abscissa). Ex-
perimental results are represented as circles. The
quadratic polynomial function proposed in eq. (1)
is represented together with its confidence interval
by the curve and its upper and lower bounds.

The experimental results show that the corpus
plays a core role on the performance of the sys-
tem. While the standard ICD list showed to be of
help, significantly better results were obtained ex-
tracting the lexicon from previously classified DTs
written in EHRs. The impact of adding more and
more DTs from previous EHRs to the corpus has
shown to reduce the number of unclassified DTs
in a logarithmic basis. Moreover, as a side effect
the precision was also improved.

4 Concluding remarks and future work

In this work we present a system to classify diag-
nostic terms in Spanish according to the ICD-9-
CM standard. The approach was based on the rep-
resentation of a corpus of (DT, ICD-code) pairs in
terms of FSTs that would parse an input DT into
an output ICD-code.

The experimental results showed that the corpus
played a core role on the performance of the sys-
tem. The role played by the corpus opens another
line of research: possibly lower amounts of data
could be used with similar performance making
use of adaptive models for different user-profiles
(writing styles, use of abbreviations, etc.).

To sum up, the contribution of this paper are:

1. Large-scale and high precision automatic DT
classification: the main contribution of this
work is a high precision automatic classifica-
tion of DTs in EHRs according to the ICD-
9-CM reference. We propose the use of the
FST framework, that allows not only to do an
exact lookup but also a soft-matching within
the lexicon or a set of positive samples.

2. Quantification of the benefits of real data: we
propose the use of previously classified cor-
pus in order to enhance the matching process
adding DTs written differently to the stan-
dard.

3. Development of medical resources in Span-
ish: to the authors’ knowledge this is the first
attempt using all the codes in the ICD list
in Spanish and rule-based pattern recognition
approach. In addition, we contributed with
an underlying process of acquisition and also
with a pre-processing of valuable lexical re-
sources within the medical domain in Span-
ish.

Future work will focus on those DTs that were
rejected by the system (and thus, left unclassi-
fied) in an attempt to gain coverage. Together
with FSTs, other strategies, such as support vec-
tor machines shall be explored. While this work
was presented as an automatic classification ap-
proach, since the goal is to arise a 100% preci-
sion, it seems of interest to explore the unclas-
sified DTs through interactive pattern recognition
approaches (Toselli et al., 2011). This is can also
be achieved through FSTs, since they were proven
efficient in computer-aided tasks.
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Abstract 

Detecting the incidence and prevalence of in-
fectious diseases is important because these 
diseases affect many people, raise the cost of 
healthcare, and, in some cases, can lead to a 
great many deaths. Recently, it has been 
shown that people’s online activity can be ap-
plied to detecting the prevalence of influenza. 
In this study, we compare the characteristics of 
two kinds of online activities, social media and 
search activity, as the social sensors capable of 
supplying information on seasonal epidemics 
and an unexpected pandemic of influenza. 
Although both approaches showed quite high 
performance for the seasonal epidemics, they 
showed poor performance for the unexpected 
influenza pandemic. The social media-based 
approach particularly over-responded to the in-
fluenza pandemic. 

1 Introduction 

Influenza has persisted as a major worldwide 
public health concern. Although it was discov-
ered early in the last century that a virus causes 
influenza (Yamanouchi et al., 1919; Smith et al., 
1933), influenza has persisted in threatening 
people and has led to the deaths of a huge num-
ber of people around the world (World Health 
Organization, 2003). Seasonal influenza epidem-
ics typically occur in winter across temperate 
regions of the world. Although unexpected influ-
enza pandemics rarely occur, we experienced 
them three times in the 20th century: the Spanish 
flu, Asian flu, and Hong Kong flu (World Health 
Organization, 2009). 

The routes of transmission of influenza are 
known. Therefore, effective ways exist to pre-
vent transmission of influenza, such as vaccina-

tion; keeping hands clean; avoiding touching the 
mouth, nose, and eyes; and using a face mask 
(World Health Organization, 2010). For early 
detection of the onsets of influenza epidemics 
and pandemics, some countries have adopted 
public surveillance agencies such as the Center 
for Disease Control and Prevention (CDC) in the 
US, the European Centre for Disease Prevention 
and Control (ECDC) in the EU, and the Infec-
tious Disease Surveillance Center (IDSC) in Ja-
pan (note that the early detection of infectious 
diseases is an important task, but it is not the or-
ganizations’ sole reason for existence). A major 
concern is that reports from these agencies typi-
cally have a time lag of 1–2 weeks. 

Recently, by aiming at earlier detection of in-
fluenza onset, internet-based approaches have 
adopted access logs of health-related websites 
(Johnson et al., 2004), search queries to the pop-
ular search engine Yahoo! (Polgreen et al., 2008), 
search queries to a medical website (Hulth et al., 
2009), search queries to Google (Ginsberg et al., 
2009), and posts on the microblogging site Twit-
ter (Aramaki et al., 2011; Signorini et al., 2011). 
People’s behavior on the internet can be divided 
into two camps: communicating with others, 
such as through posting on social media (e.g., 
Twitter, Facebook, and LinkedIn), and searching 
for themselves, such as querying search sites 
(e.g., Google, Yahoo! and Microsoft Bing). 

In this study, we have attempted to character-
ize both social media-based and search activity-
based approaches to detecting influenza in re-
spective case of seasonal epidemic and unex-
pected pandemic influenza prevalence. 
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2 Methods 

We implemented an approach to estimate the 
number of influenza patients based on Twitter 
posts in Japanese (Aramaki et al., 2011). We also 
used results from a Google search query-based 
approach (Ginsberg et al., 2009). We evaluated 
the performance of these approaches against pub-
lic surveillance data in Japan. 

Here, the annual influenza season in Japan 
typically starts from November through Decem-
ber and subsides sometime in April or May, alt-
hough the trends of the number of patients and 
the extent of epidemics vary from year to year. In 
2009, an extremely important public health issue 
facing the world was influenza A (H1N1), also 
known as “swine flu,” the first influenza pan-
demic of the 21st century. In Japan, the influenza 
A(H1N1)pdm09 viruses were first detected in 
three returning travelers from abroad on May 9, 
2009. After several hundred patients with influ-
enza A (H1N1) had been found, the Japanese 
Ministry of Health, Labour and Welfare 
(MHLW) presented a perspective that the num-
ber of newly infected patients was decreasing in 
late May. 

Twitter data 

We collected Twitter posts in Japanese during 
November 2008 – July 2009 and November 2012 
- June 2013 via the Twitter API 
(https://dev.twitter.com/). We extracted 
influenza-related Twitter posts, which contained 
the words “influenza” or “flu” (corresponding 
words in Japanese, “インフルエンザ” and “イ
ンフル,” were actually used). The period be-
tween November 2008 and April 2009 was de-
fined as the “epidemic period of 2008–2009,” 
that between November 2012 and June 2013 as 
the “epidemic period of 2012-2013,” and that 
between April 2009 and July 2009 as the “pan-
demic period of 2009.” Although there were ac-
tually two waves of the pandemic influenza in 
2009 (spring and winter), we only used the first 
wave for our analyses because the second wave 
overlapped with the epidemic influenza season of 
2009–2010. 

2.1 Twitter post-based approach 

The total number of influenza patients was calcu-
lated according to Twitter posts by influenza pa-
tients. Discriminating positive influenza posts 
from noise posts was conducted as a sentence 
classification task using natural language pro-
cessing (NLP) similar to that used to filter spam 

e-mail. For this task, we implemented a straight-
forward influenza positive/noise discriminator 
for Twitter posts based on a machine learning 
approach, the Support Vector Machine (SVM) 
(Cortes and Vapnik, 1995). Sentences in each 
Twitter post were initially divided into words 
with a morphological analyzer JUMAN 
(http://nlp.ist.i.kyoto-
u.ac.jp/EN/index.php?JUMAN) to separate 
words. Six words both immediately before and 
after an influenza-related word in a Twitter post 
(12 words maximum) were selected as input for 
the SVM discriminator. The details of parameter 
tuning were described before (Aramaki et al., 
2011). Training and performance evaluation was 
done through a 10-fold cross validation using 
922 influenza-related Twitter posts in November 
2009 (Twitter posts in this period were not used 
in the remainder of analyses in this paper), which 
were annotated manually by Japanese native 
speakers as either positive or noise influenza 
Twitter posts (caused 454 positive and 468 nega-
tive posts). The performance (F-measure, which 
is the harmonic mean of precision and recall) of 
this approach with ten-fold cross validation was 
0.76. The number of positive Twitter posts di-
vided by the total number of Twitter posts in 
Japanese in the same term was defined as the 
estimated relative number of influenza patients in 
Japan. 

2.2 Google search query-based approach 

The relative number of influenza patients esti-
mated by Google was obtained from the Google 
Flu Trends (Japan Edition) website 
(http://www.google.org/flutrends/jp/). 
Ginsberg et al. described the algorithm (Ginsberg 
et al., 2009). In short, Google Flu Trends esti-
mated the number of influenza patients based on 
the frequency of influenza-related Google search 
queries, which they found to have a high correla-
tion with the number of patients who consulted 
physicians. 

2.3 Observed number of influenza patients 

We obtained the observed number of influenza 
patients in the epidemic periods of 2008-2009 
and 2012-2013, and the pandemic period in 2009 
in Japan from the official sentinel survey by the 
Infectious Disease Surveillance Center (IDSC; 
http://idsc.nih.go.jp/) at the National 
Institute of Infectious Disease (NIID) of Japan. 
The numbers of observed patients are based on 
weekly reports from around 5,000 fixed-point 
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medical facilities dispersed throughout Japan 
(about 2,000 internal medicine and 3,000 pedi-
atric departments were selected) to the IDSC un-
der the Law concerning the Prevention of Infec-
tions and Medical Care for Patients of Infections. 
Categorizing influenza-related Twitter posts, we 
manually classified 200 randomly selected influ-
enza-related Twitter posts from the epidemic per-
iod of 2008-2009 and the pandemic period of 
2009 into five categories: “Influenza positive” 
(Twitter posts from influenza patients), “Influen-
za negative” (includes negations, influenza-
positive in the past but already recovered, and 
receiving vaccination), “Mention or joke about 
influenza,” “News,” and “Others.” 

3 Results 

3.1 Performance of the social sensors for 
epidemic and pandemic influenza 

During the seasonal epidemic periods of 2008–
2009 and 2012-2013, the number of influenza 
patients estimated by both the Twitter post-based 
and the Google search query-based approaches 
showed good correlations (r=0.82 and r=0.93; 
r=0.82 and r=0.89) with the number of patients 
by the public surveillance system (Fig. 1).  

However, during the pandemic period of 2009, 
both Twitter post-based and Google search que-
ry-based approaches showed extremely poor per-
formance (r=-0.02 and r=0.23) as predictors of 
the number of influenza patients (Fig. 2). Alt-
hough both approaches were able to react to the 
influenza pandemic, their responses were irrele-
vant. The Twitter post-based approach particular-
ly over-responded to the pandemic. 

3.2 Characterization of Twitter posts in the 
influenza epidemic and pandemic peri-
ods 

To identify the cause of the failure in predicting 
the number of patients during the pandemic peri-
od, we sought to identify the differences between 
the properties of Twitter posts in the epidemic 
and pandemic periods. 

The breakdown of 200 randomly selected 
Twitter posts that occurred during the two influ-
enza outbreaks were examined (Fig. 3). The per-
formances (F-measures) of the positive/noise 
discriminator against 200 randomly selected 
Twitter posts were 0.64 for the epidemic and 
0.05 for the pandemic periods. During the pan-
demic period, the proportions of “Mention or 
joke about influenza,” “News,” and “Others” 
were much higher than those in the epidemic pe-

a) 

 
b) 

 
 
Figure 1. Trends in the relative number of influ-
enza patients per week in the epidemic periods of 
a) 2008-2009 and b) 2012-2013 in Japan. The val-
ues were normalized with those at the peak of 
each season. The relative quantities of influenza 
patients per hospital are shown as bars. The es-
timated relative numbers by Twitter post-based 
approach are depicted as a solid line. Those by a 
Google search query-based approach are shown 
by the dotted line. 

 
 
Figure 2. Trends in the relative number of influ-
enza patients per week in the pandemic period of 
2009 in Japan. The values were normalized with 
the same one in Fig. 1a. Data are presented in the 
same way as in Fig. 1. 
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riod, and 93% (185/200) of all randomly selected 
influenza-related Twitter posts fell into one of 
these three categories. Furthermore, the perfor-
mances of the positive/noise discriminator were 
low for these three categories, especially for 
“Mention or joke about influenza.” 

4 Discussion 

Both Twitter and Google are applicable to the 
early detection and survey of seasonal epidemic 
influenza because the correlation of the numbers 
of patients estimated by the Twitter post-based 
and Google search query-based approaches with 
those by the public surveillance system was high 
(Fig. 1). The Twitter-based and Google-based 
systems perform in real time, which can reduce 
the time lag of the current public surveillance 
systems, making it an actual feasible alternative 
that is one step ahead of the current official sen-
tinel surveillance system. Because the numbers 
of Twitter and Google users are notably higher 
than the number of monitoring spots for the pub-
lic surveillance system, Twitter and Google were 
able to monitor epidemics in higher geographic 
resolution, especially in densely populated areas, 
where infectious diseases can spread easily 
among people. 

However, the Twitter post-based sensor 
caused a panic during the influenza pandemic. 
Moreover, even though it functioned better as a 
sensor than not responding at all to outbreaks, it 
completely failed to follow the trends of the out-
break (Fig. 2). If the performance of the posi-
tive/noise discriminator was sufficiently high, 
then such false-positive Twitter posts should 
have been removed properly. The actual perfor-
mance was, however, very low in the pandemic 
period, with an F-measure of 0.05. A major 
cause of this catastrophic failure appears to be 
the types of Twitter posts observed frequently 
during this period. Of all influenza-related Twit-
ter posts, 93% were classified as noise (“Mention 
and joke about influenza,” “News,” and “Oth-
ers”) (Fig. 3). The discriminator performance for 
these categories was poor, perhaps because the 
posts rarely contained frequently appearing ex-
pressions. It was difficult for a supervised ma-
chine learning approach when using bag-of-
words as features to discriminate between posi-
tive data and noise. 

Although the Google search query-based ap-
proach also got confused, it behaved much more 
moderately than the Twitter post-based approach 
did. An important difference between Twitter 

and Google is that Twitter is a kind of communi-
cation tool. Its users have the intention to have 
their posts read by other users. Studies in psy-
chology have revealed that the following three 
conditions are related to rumor transmission: 
personal anxiety, general uncertainty, and credu-
lity (trust in the rumor) (Rosnow, 1991). The en-
vironment was ripe for rumors to spread during 
the influenza pandemic period of 2009. A pan-
demic influenza in general is able to cause the 
death of millions of people. Also, it was initially 
reported that the mortality rate was extremely 
high in Mexico, and that the supply of vaccine 
was behind production schedule (personal anxie-
ty). Infectability and mortality rates in developed 
countries were undetermined (uncertainty). The 
government continuously issued official an-
nouncements (credulity), though they were both 
unclear and several steps behind. Although some 
gap might exist in separating the number of 
Twitter posts and the rate of rumor transmission, 
the knowledge clarified in the traditional studies 
of social conversations is apparently applicable 
to studies of communication through Twitter. 
Microblogging is not the same as traditional so-
cial conversation, but it is apparently related to it. 
Therefore, we can assume that the amount of 
Twitter posts will explode under unusual situa-
tions such as life-threatening pandemics and bio-
terrorist attacks. 

5 Conclusion 

In this study, we have characterized two types of 
influenza sensors that were based on people’s 
online behavior. Both the social media-based and 

 
Figure 3. Comparison of types of influenza-
related Twitter posts between the epidemic (up-
per) and the pandemic (lower) influenza periods. 
“Influenza positive” means Twitter posts from 
influenza patients. “Influenza negative” means 
Twitter posts about negation, positive in past but 
already recovered, and vaccination. The widths 
are proportional to the ratio of each type of post 
out of 200 randomly selected Twitter posts. 
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the search activity-based approaches could detect 
seasonal epidemic periods of influenza with fair-
ly good performances, whereas the social media-
based approach over-responded to the unex-
pected pandemic influenza. The number and type 
of posts on social media are likely to be affected 
by the condition for rumors to spread, which 
makes the social media-based approach less ef-
fective under such conditions. 
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Over the last several decades, a huge amount of 
genomic and experimental information are ag-
gregated as annotations on the genome sequences. 
Consequently, genome databases are still repeat-
edly designed and developed as a platform to 
integrate domain specific information. There are 
many overlapping generic features commonly 
required for genome databases. Therefore, the 
cost and time period of database development 
can be reduced by increasing reusability of the 
components that make up those genome data-
bases. Moreover, to integrate the various biologi-
cal databases and data sets, we have used seman-
tic web technologies in this work. 
   TogoStanza (http://togogenome.org/stanza) is a 
simple framework supporting SPARQL queries 
and HTML rendering engine. It can be easily 
extended by JavaScript libraries to support vari-
ous types of visualization patterns of biological 
data including table, bar chart, scattered plot, tree 
view, geographical map and genome browser. It 
provides an easy-to-use consistent framework for 
database developers and bioinformatics applica-
tion programmers. 
   First, we developed RDF (Resource Descrip-
tion Framework) datasets to consolidate genomic 
information that vary in data types and data 
sources depending on the organisms (Katayama 
et al. 2013). Next, based on the RDF data, we 
developed 31 TogoStanza, reusable visualization 
components, optimized for each biological con-
text including “environment”, “organism” and 
“gene” (Figure 1). Finally, we also developed 
TogoGenome (http://togogenome.org/) which is 
a genome database and search interfaces as an 

application of TogoStanza. Then, we collaborat-
ed with MicorbeDB.jp 
(http://microbedb.jp/MDB) and CyanoBase 
(http://genome.microbedb.jp/cyanobase) data-
base projects and each database already uses To-
goStanza for visualizing data. The look and feel 
of each TogoStanza can be configured using CSS 
to enable its integration in different web applica-
tions. 
 

 
Figure 1. Illustration of the Web pages which are 
build up using the TogoStanza framework 
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1 Introduction 

In this study, we investigate methods to automat-
ically extract medical entity relations from Eng-

lish clinical records. In our study, we take a 

semi-supervised approach. We used the Forth 
i2b2/VA (Informatics for Integrating Biology & 

the Bedside) shared task data [1]. To investigate 

the performance of relation extraction, we used 
correct concept annotations given in the dataset. 

2 Classification method  

Our target is relation between medical entity 
mentions for medical problems, treatments, and 

tests. The details of targeted relation categories 

are as follows: 
 TrIP (Treatment improves medical Problem) 

 TrWP (Treatment worsens medical Problem) 

 TrCP (Treatment causes medical Problem) 

 TrAP (Treatment is administered for medical 

Problem) 

 TrNAP (Treatment is Not Administered be-

cause of medical Problem) 

 PIP (Medical Problem indicates medical Prob-
lem) 

 TeRP (Test Reveals medical Problem) 

 TeCP (Test Conducted to investigate medical 
Problem) 

We used SVM-light toolkit [3] for relation extrac-

tion. We choose the linear kernel because it has 

shown a good performance in many classification 

tasks. We use the lexical features, morphological 

features, and syntactic features to create input vec-

tors. These features are selected in previous stud-

ies based on supervise learning. Since the SVM is 

a binary classification algorithm, we used the one-

against-the-rest method for classification into the 

multiple relation categories.  

3 Semi-Supervised Learning 

There are several ways in employing semi-

supervised learning. In this study, Self-Training 

[2] is employed. We first trained CRF-based med-

ical named entity extraction and SVM-based rela-

tion extraction models on the i2b2 training data. 

Then, we applied these models to 62,269 unla-

beled data in the i2b2 2010 dataset.  

As we wanted to extract new reliable data from 

unlabeled data, we set a threshold. We experi-

mented with a CRF-based NER’s threshold be-

tween 0.90 and 0.99 by 0.01 step, and SVM-based 

relation extraction’s threshold between -1.0 and 

1.0 by 0.1 step. Then, we decided to set the 

threshold of 0.99 for CRF-based NER and 0 for 

SVM-based relation extraction, which generated 

5,987 automatically labeled reliable data.  

4 Experimental Results 

We evaluated the results on the standard evalua-

tion metrics: the recall, the precision, and the F-
score. The result is shown in Table1.  

 

Table1. Comparison of performance 

 Recall Precision F-score 

Supervised 0.6632 0.7440 0.7013 
Semi-
Supervised 

0.6687 0.7416 0.7033 

 

It is confirmed that the performance has been 

improved by employing Self-Training. Without 

external dictionary, the best i2b2 2010 relation 
extraction score was 0.6970. To further improve 

the performance, in the future work, we try to 

increase the size of unlabeled data. 
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1 Introduction 

Due to the fast development of technologies for 
the Semantic Web in recent years, glycoinfor-
matics developers of carbohydrate databases 
were faced with the problem of representing car-
bohydrate sequences (or glycans) uniquely in a 
linear format. In particular, glycans are compli-
cated in that they are usually represented with 
ambiguity.  That is, many times, if not most, all 
of the details are unknown or may be one of sev-
eral linkages. Thus, the purpose of this work is to 
develop a unique linear representation of glycans 
such that they can be identified uniquely, wheth-
er or not they contain ambiguous information. 
We call this representation WURCS, for Web 3.0 
Unique Representation of Carbohydrate Struc-
tures, and we describe version 1.0 here.  

Carbohydrates take the form of branched, tree 
structures.  In contrast to DNA, they cannot be 
sequenced because there is no template by which 
they are synthesized; they are synthesized by 
enzymes which add monosaccharides to the sub-
strate one at a time.  Consequently, they cannot 
be replicated, and so glycomics researchers who 
attempt to sequence glycans from biological 
samples are forced to work with small amounts. 
Because of this, glycan structures that are accu-
mulated in glycan databases must often be repre-
sented ambiguously.  To represent such struc-
tures on the Semantic Web, it is necessary to rep-
resent any such structure uniquely.   

2 Method 

We first focused on developing the framework 
for generating WURCS strings from a fully-
defined glycan structure entered in atomic coor-
dinates, such as a PDB (Berman et al., 2013) or 
MOL file (Dalby et al., 1992).  Thus the main 
components of the glycan structures were first 

identified from the input:  glycan,  monosaccha-
rides, modifications and aglycons.  To define 
WURCS, the backbone, modifications and at-
tachment sites were identified and each repre-
sented uniquely.  Most other glycan formats, 
such as GlycoCT (Herget et al., 2008), use a dic-
tionary to represent monosaccharides. However, 
we focused on defining monosaccharides which 
may not be commonly found in most glycan da-
tabases so that they can all be represented 
uniquely. To do so, we used what we call a Skel-
etonCode, similar to that used in Monosaccha-
rideDB (http://www.monosaccharidedb.org) for 
each backbone to express them in a generic man-
ner.  We also defined what is called an ALIN, for 
Atomic LInear Notation to represent modifica-
tions, such as N-acetyl, sulfates, etc. We further 
defined COLINs, or COnnection LInear Notation, 
to represent the connection between the ALIN 
and SkeletonCode. Furthermore, we defined 
rules for each part to prioritize the components 
such that the generated string is ensured to be 
unique.  

3 Results 

We have developed the first unique linear nota-
tion for carbohydrate structures to theoretically 
cover all glycans that may be published in the 
literature.  We have also formed an international 
working group to support the continual develop-
ment of WURCS such that it can be adapted as 
an international standard, especially for its usage 
on the Semantic Web.  
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1 Introduction and background 

Current non-commercial extractors for the medi-
cal domain are, for English, TerMine (Frantzi et 
al. 2000), or for Spanish, Vivaldi (2001). Here 
we present a hybrid system that combines lexi-
cally-based, tagger-based, and ruled-based meth-
ods. Our approach focuses on term classification.  

2 System architecture 

The system consists of four steps (Figure 1), 
each selecting different types of candidate terms: 

•  High reliability (single- and multi-word 
terms): we use a gold standard list of 
terms curated from medical dictionaries 
(e.g. Dorland 2005, RANM 2011). 

• Medium reliability (single-word terms): 
we apply a silver standard list of terms 
that were not registered in dictionaries, but 
were found in medical books and articles. 
Those items that are not in the silver stan-
dard can be proposed as terms if: 1. a 
POS-tagger (GRAMPAL, Moreno and 
Guirao 2006) does not recognize them; 
and 2. a list of biomedical stems and af-
fixes matches any unrecognized word.  

• Medium reliability (multi-word terms): 
we use rules of multi-word term formation 
and phrase patterns. 

In Moreno et al. (2013) we explain the method-
ology to collect the lists of terms from a corpus. 

3 Conclusions and future work 

Our tool provides an approach that is com-
plementary to other extractors. However, domain 
experts have to further test and evaluate it. The 
system will be available at: 
http://cartago.lllf.uam.es/corpus3/index.pl. 
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Figure 1. Processing pipeline 
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Abstract 

Ontologies in biomedicine are often used 

for standardization of biomedical termi-

nology and can also be described as con-

trolled biomedical vocabularies. Under-

standing structures of biomedical ontolo-

gies/vocabularies and their relations 

plays an important role in activities such 

as ontology reuse. In this paper we pre-

sent OntoCloud, a tool for visualizing on-

tology relations and shapes. 

1 OntoCloud 

OntoCloud (http://bionlp.dbcls.jp/ontocloud/) 

is an interactive web application that offers a 

visualization of all biomedical ontologies availa-

ble through BioPortal (Whetzel et al., 2011). The 

main goal of OntoCloud is to help ontology en-

gineers and other users understand how BioPor-

tal ontologies connect. OntoCloud groups ontol-

ogies that play an important role in connecting 

other ontologies and ontology communities. Us-

ers can identify which ontologies represent popu-

lar vocabularies that that are adopted for other 

vocabularies. In addition, OntoCloud aims to 

visualize which ontologies are closer to struc-

tured hierarchical vocabularies (i.e., contain 

more hierarchical relations like subclass_of, is_a 

or type_of), though illustrating ontology shapes. 

Users can interact with the application with the 

use of several functions, for example, searching 

for ontologies, visualize communities of densely 

connected ontologies, and visualize a custom 

subset of ontologies. Since BioPortal data often 

changes (e.g., new ontologies are being uploaded 

or new relations are being defined), OntoCloud 

also offers visualizations at different time points. 

Figure 1 shows an example of visualizing a 

subset of ontologies in OntoCloud. Each node 

represents an ontology while edges represent 

connections between ontologies. Different 

groups of closely related ontologies are also rep-

resented with different colors. Structures of on-

tologies are represented with three different 

symbols (a circle, a triangle and a drop). 

 

 
Figure 1: An example of visualization in OntoCloud. 
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Abstract 

Extraction of relations from literature is an important 

research topic in the field of biomedical natural lan-

guage processing. Biomedical event is a kind of  

grained  and  complex relation. Recently, much re-

search was focused on extracting biomedical events 

since it is proposed in BioNLP’09 challenges. Up to 

date, some approaches have been proposed. However, 

the performance of these approaches needs to be im-

proved. In  this  paper  we  propose  a  novel  method  

to  extract  biomedical events from text based on dou-

ble classifications. In the first classification, we classi-

fy the candidate event pairs into 9 subsets in accord 

with 9 types of events. In the second classification, 9 

binary classifiers are applied on each subset. Then it 

was  evaluated  on  the  Genia  event  extraction test 

datasets (Task 1) of BioNLP’2013, we get the per-

formance with F-scores  of  48.59 on the development 

dataset  and  41.26 on the test dataset,  respectively. In 

particular, we get high precision on all types of events 

while the recall is ordinary.  

1 Method introduction 

In our system, a complex biomedical event is 

defined as the combination of one or more ARG-

TRIG pairs. Here ARG means the argument in 

the event and TRIG means the trigger word. In 

this article, we first extract the word string on the 

dependency path from the annotated protein to 

the root of syntax tree. Then we extract the 

ARG-TRIG pairs from the word string. In the 

following we obtain the positive ARG-TRIG 

pairs by double classifications which contain a 

multi-class classification and a set of binary clas-

sification. Finally a post-processing is applied to 

these pairs to construct events. 

The workflow of the biomedical event extraction 

system is as follows: 

(1) Text preprocessing 

(2) Extracting candidate event pairs. 

(3) Double classification to get the positive pairs. 

(4) Post-processing to transfer the pairs into 

events. 

The overall architecture of the system is shown 

in Figure. 1. 

 

Figure .1 The overall architecture of the system 

2 Experiment and evaluation 

We use the datasets provided by BioNLP’2013 

GE Shared Task to evaluate our extraction meth-

od. The datasets include training, development, 

and test data. The extracted events are submitted 

to the online evaluation system to evaluate the 

results. 

Our system obtained F-score with 48.59  on the 

development dataset  and  41.26 on the test da-

taset,  respectively. We got the best precision 

which is comparable with all the systems partici-

pated in the BioNLP’13  challenge. In particular, 

the precision  of Protein_catabolism reaches 100% 

while the recall is 50%. Obviously, compared 

with the f-score on development dataset, there is 

a dramatic decline on test dataset, which is due to 

our method of getting samples. 
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Document-level gene normalization (DGN), 

which produces a list of gene identifiers relevant 

to an input document, helps database curators to 

search for articles of interest by indexing articles 

with gene identifiers. Recent advances in auto-

matic extraction of information from the biology 

literature call for mention-level gene normaliza-

tion (MGN) systems. However, there have been 

no annotated corpora for MGN, probably be-

cause of a somewhat unfounded assumption 

(convertibility assumption) that it might be 

straightforward to map gene mentions into gene 

identifiers given a list of gene identifiers for the 

document. In the present work, we constructed 

gold standard annotations for the MGN task and 

assessed the validity of the convertibility as-

sumption with GeneTUKit (Huang et al., 2011), 

a state-of-the-art DGN system. 

Since it is too costly to develop annotated cor-

pora from scratch, we made the annotations on 

top of an existing corpus. We utilized the Bi-

oCreative2 GN corpus augmented by Hakenberg 

et al. (2008), which contains document-level an-

notations of genes of thirteen species. We first 

identified 1,139 gene mentions from 118 ab-

stracts by using BANNER (Leaman and Gonza-

lez, 2008). We then paired each gene mention in 

an abstract with the gene identifiers annotated for 

the abstract, producing 3,939 mention-identifier 

pairs. Given a mention-identifier pair, human 

annotators first examined whether the gene men-

tion is correctly identified. When the mention is 

correct, they checked also if the gene mention 

and the identifier represent the same gene to each 

other. Two human annotators majoring in bioin-

formatics achieved a sufficiently high inter-

annotator agreement rate; they agreed upon 647 

out of 796 mentions for the correctness of the 

gene mentions, and 1,774 out of 1,886 pairs for 

the appropriateness of mention-identifier pairing. 

The final version of annotations consists of 3,174 

gene-mention pairs. 

The resulting annotations show the following 

characteristics. First, contrary to our prediction 

that a mention is paired with at most one identi-

fier, 15.4% of gene mentions are paired with two 

or more identifiers (e.g., homologous genes with 

different species), where 85% of them are paired 

with exactly two identifiers. This suggests that a 

single mention should be allowed to pair with at 

most two identifiers. Second, there are only 24 

pairs of gene mentions with identical surface 

forms but with different gene identifiers, which 

are peculiar to the MGN task. This supports the 

convertibility assumption. Third, gene identifiers 

are paired with various numbers of gene men-

tions (3.7±2.94), suggesting that there are rela-

tively significant gene identifiers from the point 

of MGN systems. 

Finally, we evaluated GeneTUKit for MGN 

with the help of two heuristic methods, or H1 

and H2. H1 matches gene mentions with gene 

names produced by the GN system along with 

predicted gene identifiers, and H2 searches for 

the gene mentions from the known synonyms of 

predicted gene identifiers. The F-scores of MGN 

(0.377 with H1 and 0.337 with H2) are lower 

than the F-score for DGN (0.420). We will de-

velop a MGN system by utilizing the characteris-

tics identified earlier.  

This work was supported by the National Re-

search Foundation of Korea (NRF) grant funded 

by the Korean government (MSIP) 

(No.20110029447). 
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In Database Center for Life Science (DBCLS), 
within the framework of the Life Science Data-
base Integration Project, we are working on de-
veloping an infrastructure which may enable in-
tegrative use of life science databases. Togo-
Genome1 is a data retrieval system developed 
within the project. Currently, various datasets 
related to microbial genome data are integrated 
in TogoGenome by using Semantic Web tech-
nology: all data are represented as RDF state-
ments in TogoGenome. TogoGenome provides a 
faceted search system for microbial genes, allow-
ing users to explore microbial genes interactively 
by applying multiple ontology terms as data fil-
ters.  
In this study we focus on microbial phenotypes 
as new information to be introduced into Togo-
Genome. Phenotype is defined as the observable 
physical or biochemical characteristics of an or-
ganism resulting from both genetic makeup and 
environmental influences. Understanding how 
phenotypes emanate from a set of genotypes is 
one of the major goals of microbiology. Recently 
remarkable progress of technology has dropped 
the cost of genome sequencing drastically, which 
has led to an enormous amount of microbial ge-
nome data increasing at a rapid rate. On the other 
hand, information about microbial phenotypes 
has largely still been in the scientific papers or 
textbooks even though there has been a vast 
amount of descriptions over the past century. 
Therefore we started to develop MPO, an OWL 
ontology of microbial phenotype, and a set of 
phenotype LOD (Linked Open Data). These are 
integrated in TogoGenome to provide effective 
faceted search in the above regard.  

Two data	
 sources were used to collect terms 
relevant to microbial phenotypes. One is the Ge-
nome Online Database (GOLD). Each GOLD 
entry contains information related to phenotype 
in some fields (e.g. Oxygen requirement, Cell 
shape, Motility, Sporulation, Pressure, Tempera-
ture range, Salinity, Gram staining, Cell ar-
rangement, Energy source, Metabolism and Phe-
notype). The other is a set of genome papers. 
Since biological features of the target species, 
which includes phenotypes, are often described 
in the introduction section of genome papers. We 
manually checked the phenotype terms described 
in the introduction section. Finally we defined 
157 ontology terms from the collected terms. 
Using a text-book and OMP, which is an another 
ontology of microbial phenotype developed in 
OBO format, as references, we defined a class 
which represents microbial phenotype at the 
first-level and seven classes at the second level in 
the hierarchy of MPO. The seven classes are De-
velopment, Environment condition tolerance, 
Microbial metabolism related phenotype, Mor-
phology, Motility, Serotype and Staining. Then 
we assigned collected terms to the appropriate 
places in the hierarchy. MPO is available at BioPor-
tal.  
We also constructed a LOD data set that contains 
RDF statements of which the subjects are NCBI tax-
onomy ID and the objects are MPO terms. Currently 
we have been developing several web applications to 
visualize and analyze retrieved phenotype LOD, 
which are avaible at TogoGenome. 
 

1http://togogenome.org/ 
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